MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine

Author(s)
Li, Yiwei; Wong, Ian Y; Guo, Ming
Thumbnail
DownloadAccepted version (2.420Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano‐topographies, 3) traction measurements of cells in three‐dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems‐level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.</jats:p>
Date issued
2022-09
URI
https://hdl.handle.net/1721.1/152548
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Small
Publisher
Wiley
Citation
Li, Yiwei, Wong, Ian Y and Guo, Ming. 2022. "Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine." Small, 18 (36).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.