MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning from nature by leveraging integrative biomateriomics modeling toward adaptive and functional materials

Author(s)
Arevalo, Sofia E.; Buehler, Markus J.
Thumbnail
Download43577_2023_Article_610.pdf (3.025Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Biological systems generate a wealth of materials, and their design principles inspire and inform scientists from a broad range of fields. Nature often adapts hierarchical multilevel material architectures to achieve a set of properties for specific functions, providing templates for difficult tasks of understanding the intricate interplay between structure–property–function relationships. While these materials tend to be complex and feature intricate functional interactions across scales, molecular-based multiscale modeling, machine learning, and artificial intelligence combined with experimental approaches to synthesize and characterize materials have emerged as powerful tools for analysis, prediction, and design. This article examines materiomic graph-based modeling frameworks for assisting researchers to pursue materials-focused studies in a biological context, and provides an overview of methods that can be applied to bottom-up manufacturing, including a historical perspective of bioinspired materials research. Through the advent of novel modeling architectures and diverse systems from nature, there is potential to develop materials with improved properties. Graphical abstract
Date issued
2023-10-25
URI
https://hdl.handle.net/1721.1/152586
Department
Massachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanics
Publisher
Springer International Publishing
Citation
Arevalo, Sofia E. and Buehler, Markus J. 2023. "Learning from nature by leveraging integrative biomateriomics modeling toward adaptive and functional materials."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.