MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling mass removal and sediment deposition in stormwater ponds using floating treatment islands: a computational approach

Author(s)
Xavier, Manoel L. M.; Janzen, Johannes G.; Nepf, Heidi
Thumbnail
Download11356_2023_30218_ReferencePDF.pdf (1.877Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract Floating treatment islands (FTIs) offer effective solutions for stormwater management, providing flood attenuation and pollutant removal capabilities. However, there remains a knowledge gap concerning their performance, specifically in terms of pollutant removal and sediment deposition. To address this gap, the present study employs computational fluid dynamics (CFD) modeling to investigate the intricate interactions within FTI systems. Various FTI configurations are analyzed, considering mass removal through FTIs and sediment deposition, the first time where these two processes were considered together in a CFD environment. The findings demonstrate that FTIs have a significant influence on flow patterns and mass removal. Notably, FTIs enhance mass removal compared to the control case, with larger sediment particles exhibiting higher removal rates. The correlation between the short-circuit index and sedimentation in FTI ponds highlights the potential of FTIs as indicators of treatment efficiency. Furthermore, the study focuses on mass removal exclusively through the FTI root zones. The positioning of FTIs within the pond has a considerable impact, resulting in differences of up to 20% in mass removal. Moreover, the FTI configuration exerts a more pronounced influence on mass removal through FTIs than through sediment deposition alone. In cases where both processes occur simultaneously, the presence of FTIs lead to higher mass removal, primarily attributed to the FTIs themselves, particularly in the initial segment. Remarkably, certain FTI configurations enable mass removal exceeding 70% for large sediment particles, even with a pond length less than half of the original.
Date issued
2023-10-13
URI
https://hdl.handle.net/1721.1/152967
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Springer Berlin Heidelberg
Citation
Xavier, Manoel L. M., Janzen, Johannes G. and Nepf, Heidi. 2023. "Modeling mass removal and sediment deposition in stormwater ponds using floating treatment islands: a computational approach."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.