Show simple item record

dc.contributor.authorLashkari, Nima
dc.contributor.authorLiu, Hong
dc.contributor.authorRajagopal, Srivatsan
dc.date.accessioned2023-11-21T13:33:49Z
dc.date.available2023-11-21T13:33:49Z
dc.date.issued2023-11-16
dc.identifier.urihttps://hdl.handle.net/1721.1/153012
dc.description.abstractAbstract In various contexts in mathematical physics, such as out-of-equilibrium physics and the asymptotic information theory of many-body quantum systems, one needs to compute the logarithm of a positive unbounded operator. Examples include the von Neumann entropy of a density matrix and the flow of operators with the modular Hamiltonian in the Tomita-Takesaki theory. Often, one encounters the situation where the operator under consideration, which we denote by ∆, can be related by a perturbative series to another operator ∆0, whose logarithm is known. We set up a perturbation theory for the logarithm log ∆. It turns out that the terms in the series possess a remarkable algebraic structure, which enables us to write them in the form of nested commutators plus some “contact terms”.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/JHEP11(2023)097en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titlePerturbation theory for the logarithm of a positive operatoren_US
dc.typeArticleen_US
dc.identifier.citationJournal of High Energy Physics. 2023 Nov 16;2023(11):97en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-11-19T04:54:13Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-11-19T04:54:13Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record