Show simple item record

dc.contributor.authorMeier, Christoph
dc.contributor.authorFuchs, Sebastian L.
dc.contributor.authorMuch, Nils
dc.contributor.authorNitzler, Jonas
dc.contributor.authorPenny, Ryan W.
dc.contributor.authorPraegla, Patrick M.
dc.contributor.authorProell, Sebastian D.
dc.contributor.authorSun, Yushen
dc.contributor.authorWeissbach, Reimar
dc.contributor.authorSchreter, Magdalena
dc.contributor.authorHodge, Neil E.
dc.contributor.authorJohn Hart, A.
dc.contributor.authorWall, Wolfgang A.
dc.date.accessioned2023-11-30T21:35:45Z
dc.date.available2023-11-30T21:35:45Z
dc.date.issued2021-08-22
dc.identifier.issn0936-7195
dc.identifier.urihttps://hdl.handle.net/1721.1/153096
dc.description.abstractPowder bed fusion additive manufacturing (PBFAM) of metals has the potential to enable new paradigms of product design, manufacturing and supply chains while accelerating the realization of new technologies in the medical, aerospace, and other industries. Currently, wider adoption of PBFAM is held back by difficulty in part qualification, high production costs and low production rates, as extensive process tuning, post‐processing, and inspection are required before a final part can be produced and deployed. Physics‐based modeling and predictive simulation of PBFAM offers the potential to advance fundamental understanding of physical mechanisms that initiate process instabilities and cause defects. In turn, these insights can help link process and feedstock parameters with resulting part and material properties, thereby predicting optimal processing conditions and inspiring the development of improved processing hardware, strategies and materials. This work presents recent developments of our research team in the modeling of metal PBFAM processes spanning length scales, namely mesoscale powder modeling, mesoscale melt pool modeling, macroscale thermo‐solid‐mechanical modeling and microstructure modeling. Ongoing work in experimental validation of these models is also summarized. In conclusion, we discuss the interplay of these individual submodels within an integrated overall modeling approach, along with future research directions.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionof10.1002/gamm.202100014en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceWiley-VCHen_US
dc.titlePhysics‐based modeling and predictive simulation of powder bed fusion additive manufacturing across length scalesen_US
dc.typeArticleen_US
dc.identifier.citationMeier, Christoph, Fuchs, Sebastian L., Much, Nils, Nitzler, Jonas, Penny, Ryan W. et al. 2021. "Physics‐based modeling and predictive simulation of powder bed fusion additive manufacturing across length scales." GAMM-Mitteilungen, 44 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalGAMM-Mitteilungenen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-11-30T21:24:05Z
dspace.orderedauthorsMeier, C; Fuchs, SL; Much, N; Nitzler, J; Penny, RW; Praegla, PM; Proell, SD; Sun, Y; Weissbach, R; Schreter, M; Hodge, NE; John Hart, A; Wall, WAen_US
dspace.date.submission2023-11-30T21:24:31Z
mit.journal.volume44en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record