Show simple item record

dc.contributor.authorWang, Di
dc.contributor.authorMaharjan, Sushila
dc.contributor.authorKuang, Xiao
dc.contributor.authorWang, Zixuan
dc.contributor.authorMille, Luis S
dc.contributor.authorTao, Ming
dc.contributor.authorYu, Peng
dc.contributor.authorCao, Xia
dc.contributor.authorLian, Liming
dc.contributor.authorLv, Li
dc.contributor.authorHe, Jacqueline Jialu
dc.contributor.authorTang, Guosheng
dc.contributor.authorYuk, Hyunwoo
dc.contributor.authorOzaki, C Keith
dc.contributor.authorZhao, Xuanhe
dc.contributor.authorZhang, Yu Shrike
dc.date.accessioned2023-12-06T15:43:08Z
dc.date.available2023-12-06T15:43:08Z
dc.date.issued2022-10-28
dc.identifier.urihttps://hdl.handle.net/1721.1/153127
dc.description.abstractThree-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreate vein- and artery-like tissues, respectively. The tough hydrogel consisted of energy-dissipative ionically cross-linked alginate and elastic enzyme–cross-linked gelatin. The 3D bioprinted venous and arterial conduits exhibited key functionalities of respective vessels including relevant mechanical properties, perfusability, barrier performance, expressions of specific markers, and susceptibility to severe acute respiratory syndrome coronavirus 2 pseudo-viral infection. Notably, the arterial conduits revealed physiological vasoconstriction and vasodilatation responses. We further explored the feasibility of these conduits for vascular anastomosis. Together, our study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future.en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionof10.1126/sciadv.abq6900en_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceAAASen_US
dc.titleMicrofluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vesselsen_US
dc.typeArticleen_US
dc.identifier.citationWang, Di, Maharjan, Sushila, Kuang, Xiao, Wang, Zixuan, Mille, Luis S et al. 2022. "Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels." Science Advances, 8 (43).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-12-06T15:39:55Z
dspace.orderedauthorsWang, D; Maharjan, S; Kuang, X; Wang, Z; Mille, LS; Tao, M; Yu, P; Cao, X; Lian, L; Lv, L; He, JJ; Tang, G; Yuk, H; Ozaki, CK; Zhao, X; Zhang, YSen_US
dspace.date.submission2023-12-06T15:40:03Z
mit.journal.volume8en_US
mit.journal.issue43en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record