Show simple item record

dc.contributor.authorFeng, Tony
dc.contributor.authorYun, Zhiwei
dc.contributor.authorZhang, Wei
dc.date.accessioned2023-12-11T19:02:13Z
dc.date.available2023-12-11T19:02:13Z
dc.date.issued2023-11-27
dc.identifier.urihttps://hdl.handle.net/1721.1/153129
dc.description.abstractWe construct special cycles on the moduli stack of hermitian shtukas. We prove an identity between (1) the r th $r^{\mathrm{th}}$ central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of hermitian shtukas with r $r$ legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00222-023-01228-yen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleHigher Siegel–Weil formula for unitary groups: the non-singular termsen_US
dc.typeArticleen_US
dc.identifier.citationFeng, Tony, Yun, Zhiwei and Zhang, Wei. 2023. "Higher Siegel–Weil formula for unitary groups: the non-singular terms."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-12-03T04:10:03Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-12-03T04:10:02Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record