dc.contributor.author | Feng, Tony | |
dc.contributor.author | Yun, Zhiwei | |
dc.contributor.author | Zhang, Wei | |
dc.date.accessioned | 2023-12-11T19:02:13Z | |
dc.date.available | 2023-12-11T19:02:13Z | |
dc.date.issued | 2023-11-27 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/153129 | |
dc.description.abstract | We construct special cycles on the moduli stack of hermitian shtukas. We prove an identity between (1) the
r
th
$r^{\mathrm{th}}$
central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of hermitian shtukas with
r
$r$
legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series. | en_US |
dc.publisher | Springer Berlin Heidelberg | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s00222-023-01228-y | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | Higher Siegel–Weil formula for unitary groups: the non-singular terms | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Feng, Tony, Yun, Zhiwei and Zhang, Wei. 2023. "Higher Siegel–Weil formula for unitary groups: the non-singular terms." | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.identifier.mitlicense | PUBLISHER_CC | |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2023-12-03T04:10:03Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s) | |
dspace.embargo.terms | N | |
dspace.date.submission | 2023-12-03T04:10:02Z | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |