MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decision-Aware Conditional GANs for Time Series Data

Author(s)
Sun, He; Deng, Zhun; Chen, Hui; Parkes, David
Thumbnail
Download3604237.3626855.pdf (1.181Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We introduce the decision-aware time-series conditional generative adversarial network (DAT-CGAN), a method for the generation of time-series data that is designed to support decision-making. The framework adopts a multi-Wasserstein loss on decision-related quantities and an overlapped block-sampling approach for sample efficiency. We characterize the generalization properties of DAT-CGAN and in application to a multi-period portfolio choice problem and financial time series data, we demonstrate better training stability and generative quality in regard to both raw data and decision-related quantities than strong GAN-based baselines.
Date issued
2023-11-27
URI
https://hdl.handle.net/1721.1/153133
Department
Sloan School of Management
Publisher
ACM|4th ACM International Conference on AI in Finance
Citation
Sun, He, Deng, Zhun, Chen, Hui and Parkes, David. 2023. "Decision-Aware Conditional GANs for Time Series Data."
Version: Final published version
ISBN
979-8-4007-0240-2

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.