Show simple item record

dc.contributor.authorBertsimas, Dimitris
dc.contributor.authorVillalobos Carballo, Kimberly
dc.contributor.authorBoussioux, Léonard
dc.contributor.authorLi, Michael L.
dc.contributor.authorPaskov, Alex
dc.contributor.authorPaskov, Ivan
dc.date.accessioned2023-12-14T19:54:47Z
dc.date.available2023-12-14T19:54:47Z
dc.date.issued2023-12-07
dc.identifier.urihttps://hdl.handle.net/1721.1/153166
dc.description.abstractThis paper presents a novel holistic deep learning framework that simultaneously addresses the challenges of vulnerability to input perturbations, overparametrization, and performance instability from different train-validation splits. The proposed framework holistically improves accuracy, robustness, sparsity, and stability over standard deep learning models, as demonstrated by extensive experiments on both tabular and image data sets. The results are further validated by ablation experiments and SHAP value analysis, which reveal the interactions and trade-offs between the different evaluation metrics. To support practitioners applying our framework, we provide a prescriptive approach that offers recommendations for selecting an appropriate training loss function based on their specific objectives. All the code to reproduce the results can be found at https://github.com/kimvc7/HDLen_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10994-023-06482-yen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleHolistic deep learningen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris, Villalobos Carballo, Kimberly, Boussioux, Léonard, Li, Michael L., Paskov, Alex et al. 2023. "Holistic deep learning."
dc.contributor.departmentSloan School of Management
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-12-10T04:07:34Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-12-10T04:07:34Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record