MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Attention-based neural networks for clinical prediction modelling on electronic health records

Author(s)
Fridgeirsson, Egill A.; Sontag, David; Rijnbeek, Peter
Thumbnail
Download12874_2023_Article_2112.pdf (1.243Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background Deep learning models have had a lot of success in various fields. However, on structured data they have struggled. Here we apply four state-of-the-art supervised deep learning models using the attention mechanism and compare against logistic regression and XGBoost using discrimination, calibration and clinical utility. Methods We develop the models using a general practitioners database. We implement a recurrent neural network, a transformer with and without reverse distillation and a graph neural network. We measure discrimination using the area under the receiver operating characteristic curve (AUC) and the area under the precision recall curve (AUPRC). We assess smooth calibration using restricted cubic splines and clinical utility with decision curve analysis. Results Our results show that deep learning approaches can improve discrimination up to 2.5% points AUC and 7.4% points AUPRC. However, on average the baselines are competitive. Most models are similarly calibrated as the baselines except for the graph neural network. The transformer using reverse distillation shows the best performance in clinical utility on two out of three prediction problems over most of the prediction thresholds. Conclusion In this study, we evaluated various approaches in supervised learning using neural networks and attention. Here we do a rigorous comparison, not only looking at discrimination but also calibration and clinical utility. There is value in using deep learning models on electronic health record data since it can improve discrimination and clinical utility while providing good calibration. However, good baseline methods are still competitive.
Date issued
2023-12-07
URI
https://hdl.handle.net/1721.1/153169
Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science
Publisher
BioMed Central
Citation
BMC Medical Research Methodology. 2023 Dec 07;23(1):285
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.