Show simple item record

dc.contributor.authorHavel, Timothy F.
dc.date.accessioned2023-12-20T19:34:25Z
dc.date.available2023-12-20T19:34:25Z
dc.date.issued2024-02
dc.identifier.issn1661-4909
dc.identifier.urihttps://hdl.handle.net/1721.1/153218
dc.description.abstractThis paper shows how geometric algebra can be used to derive a novel generalization of Heron’s classical formula for the area of a triangle in the plane to higher dimensions. It begins by illustrating some of the many ways in which the conformal model of three-dimensional Euclidean space yields provocative insights into some of our most basic intuitive notions of solid geometry. It then uses this conceptual framework to elucidate the geometric meaning of Heron’s formula in the plane, and explains in detail how it extends naturally to the volumes of tetrahedra in space. The paper closes by outlining a proof of a previously conjectured extension of the formula to the hyper-volumes of simplices in all dimensions.en_US
dc.relation.isversionof10.1007/s00006-023-01305-8
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceSpringer Natureen_US
dc.titleHeron's Formula in Higher Dimensionsen_US
dc.typeArticleen_US
dc.identifier.citationHavel, Timothy F. 2024. "Heron's Formula in Higher Dimensions." Advances in Applied Clifford Algebras, 34.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverTimothy F. Havelen_US
dc.relation.journalAdvances in Applied Clifford Algebrasen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2023-12-16T13:36:49Z
mit.journal.volume34en_US
mit.licensePUBLISHER_CC
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record