dc.contributor.author | Zhu, Honglin | |
dc.date.accessioned | 2023-12-21T21:19:25Z | |
dc.date.available | 2023-12-21T21:19:25Z | |
dc.date.issued | 2023-02-01 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.issn | 1089-7658 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/153229 | |
dc.description.abstract | We examine Atiyah’s Hermitian axiom for two-dimensional complex topological quantum field theories. Building on the correspondence between 2D topological quantum field theories (TQFTs) and Frobenius algebras, we find the algebraic objects corresponding to Hermitian and unitary TQFTs, respectively, and prove structure theorems about them. We then clarify a few older results on unitary TQFTs using our structure theorems. | en_US |
dc.language.iso | en_US | |
dc.publisher | AIP Publishing | en_US |
dc.relation.isversionof | 10.1063/5.0121440 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights | An error occurred on the license name. | * |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | AIP Publishing | en_US |
dc.subject | Mathematical Physics | en_US |
dc.subject | Statistical and Nonlinear Physics | en_US |
dc.title | The Hermitian axiom on two-dimensional topological quantum field theories | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Honglin Zhu; The Hermitian axiom on two-dimensional topological quantum field theories. J. Math. Phys. 1 February 2023; 64 (2): 022301. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.relation.journal | Journal of Mathematical Physics | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.date.submission | 2023-12-21T21:16:00Z | |
mit.journal.volume | 64 | en_US |
mit.journal.issue | 2 | en_US |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |