Show simple item record

dc.contributor.authorPonciano-Ojeda, Francisco
dc.contributor.authorMojica-Casique, Cristian
dc.contributor.authorHernández-Gómez, Santiago
dc.contributor.authorDel Angel, Alberto
dc.contributor.authorHoyos-Campo, Lina M.
dc.contributor.authorFlores-Mijangos, Jesús
dc.contributor.authorRamírez-Martínez, Fernando
dc.contributor.authorSahagún Sánchez, Daniel
dc.contributor.authorJáuregui, Rocío
dc.contributor.authorJiménez-Mier, José
dc.date.accessioned2023-12-22T16:51:17Z
dc.date.available2023-12-22T16:51:17Z
dc.date.issued2023-12-01
dc.identifier.urihttps://hdl.handle.net/1721.1/153247
dc.description.abstractThis paper presents a general review of the results of the experimental and theoretical work carried out by our research group to study the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><mo stretchy="false">&rarr;</mo><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> electric quadrupole transition in atomic rubidium. The experiments were carried out with room-temperature atoms in an absorption cell. A steady-state population of atoms in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> excited state is produced by a a narrow-bandwidth preparation laser locked to the D2 transition. A second CW laser is used to produce the forbidden transition with resolution of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> hyperfine states of both rubidium isotopes. The process is detected by recording the 420(422) nm fluorescence that occurs when the atoms in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6</mn><msub><mi>P</mi><mi>J</mi></msub></mrow></semantics></math></inline-formula> state decay directly into the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><mi>S</mi></mrow></semantics></math></inline-formula> ground state. The fluorescence spectra show a strong dependence on the relative polarization directions of the preparation laser and the beam producing the forbidden transition. This dependence is directly related to a strong anisotropy in the populations of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> intermediate magnetic substates, and also to the electric quadrupole selection rules over magnetic quantum numbers. A calculation based on the rate equations that includes velocity and detuning dependent transition rates is adequate to reproduce these results. The forbidden transition is also shown to be an ideal probe to measure the Autler&ndash;Townes splitting generated in the preparation of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> state. Examples of spectra obtained with cold atoms in a magneto-optical trap (MOT) are also presented. These spectra show the expected Autler&ndash;Townes doublet structure with asymmetric line profiles that result as a consequence of the red-detuning of the trapping laser in the MOT.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/photonics10121335en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleThe 5P3/2 → 6PJ (J=1/2,3/2) Electric Dipole Forbidden Transitions in Rubidiumen_US
dc.typeArticleen_US
dc.identifier.citationPhotonics 10 (12): 1335 (2023)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-12-22T13:45:17Z
dspace.date.submission2023-12-22T13:45:17Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record