MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LiCROM: Linear-Subspace Continuous Reduced Order Modeling with Neural Fields

Author(s)
Chang, Yue; Chen, Peter Yichen; Wang, Zhecheng; Chiaramonte, Maurizio M.; Carlberg, Kevin; Grinspun, Eitan; ... Show more Show less
Thumbnail
Download3610548.3618158.pdf (11.70Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Linear reduced-order modeling (ROM) simplifies complex simulations by approximating the behavior of a system using a simplified kinematic representation. Typically, ROM is trained on input simulations created with a specific spatial discretization, and then serves to accelerate simulations with the same discretization. This discretization-dependence is restrictive. Becoming independent of a specific discretization would provide flexibility to mix and match mesh resolutions, connectivity, and type (tetrahedral, hexahedral) in training data; to accelerate simulations with novel discretizations unseen during training; and to accelerate adaptive simulations that temporally or parametrically change the discretization. We present a flexible, discretization-independent approach to reduced-order modeling. Like traditional ROM, we represent the configuration as a linear combination of displacement fields. Unlike traditional ROM, our displacement fields are continuous maps from every point on the reference domain to a corresponding displacement vector; these maps are represented as implicit neural fields. With linear continuous ROM (LiCROM), our training set can include multiple geometries undergoing multiple loading conditions, independent of their discretization. This opens the door to novel applications of reduced order modeling. We can now accelerate simulations that modify the geometry at runtime, for instance via cutting, hole punching, and even swapping the entire mesh. We can also accelerate simulations of geometries unseen during training. We demonstrate one-shot generalization, training on a single geometry and subsequently simulating various unseen geometries.
Date issued
2023-12-10
URI
https://hdl.handle.net/1721.1/153261
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
ACM|SIGGRAPH Asia 2023 Conference Papers
Citation
Chang, Yue, Chen, Peter Yichen, Wang, Zhecheng, Chiaramonte, Maurizio M., Carlberg, Kevin et al. 2023. "LiCROM: Linear-Subspace Continuous Reduced Order Modeling with Neural Fields."
Version: Final published version
ISBN
979-8-4007-0315-7

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.