Show simple item record

dc.contributor.authorHaddock, Jamie
dc.contributor.authorWill, Tyler
dc.contributor.authorVendrow, Joshua
dc.contributor.authorZhang, Runyu
dc.contributor.authorMolitor, Denali
dc.contributor.authorNeedell, Deanna
dc.contributor.authorGao, Mengdi
dc.contributor.authorSadovnik, Eli
dc.date.accessioned2024-01-11T16:07:30Z
dc.date.available2024-01-11T16:07:30Z
dc.date.issued2023-12-19
dc.identifier.urihttps://hdl.handle.net/1721.1/153309
dc.description.abstractWe introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s43670-023-00077-3en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleNeural nonnegative matrix factorization for hierarchical multilayer topic modelingen_US
dc.typeArticleen_US
dc.identifier.citationSampling Theory, Signal Processing, and Data Analysis. 2023 Dec 19;22(1):4en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-12-24T04:17:57Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-12-24T04:17:57Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record