| dc.contributor.author | Haddock, Jamie | |
| dc.contributor.author | Will, Tyler | |
| dc.contributor.author | Vendrow, Joshua | |
| dc.contributor.author | Zhang, Runyu | |
| dc.contributor.author | Molitor, Denali | |
| dc.contributor.author | Needell, Deanna | |
| dc.contributor.author | Gao, Mengdi | |
| dc.contributor.author | Sadovnik, Eli | |
| dc.date.accessioned | 2024-01-11T16:07:30Z | |
| dc.date.available | 2024-01-11T16:07:30Z | |
| dc.date.issued | 2023-12-19 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/153309 | |
| dc.description.abstract | We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics. | en_US |
| dc.publisher | Springer International Publishing | en_US |
| dc.relation.isversionof | https://doi.org/10.1007/s43670-023-00077-3 | en_US |
| dc.rights | Creative Commons Attribution | en_US |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
| dc.source | Springer International Publishing | en_US |
| dc.title | Neural nonnegative matrix factorization for hierarchical multilayer topic modeling | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Sampling Theory, Signal Processing, and Data Analysis. 2023 Dec 19;22(1):4 | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
| dc.identifier.mitlicense | PUBLISHER_CC | |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2023-12-24T04:17:57Z | |
| dc.language.rfc3066 | en | |
| dc.rights.holder | The Author(s) | |
| dspace.embargo.terms | N | |
| dspace.date.submission | 2023-12-24T04:17:57Z | |
| mit.license | PUBLISHER_CC | |
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |