MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measurement of the production cross section for a W boson in association with a charm quark in proton–proton collisions at √s = 13 TeV

Author(s)
Unknown author
Thumbnail
Download10052_2023_Article_12258.pdf (2.476Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton–proton collisions at a center-of-mass energy of 13 $$\,\text {Te}\hspace{-.08em}\text {V}$$ Te V . The analysis uses a data sample corresponding to a total integrated luminosity of 138 $$\,\text {fb}^{-1}$$ fb - 1 collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The $$\hbox {W}+\hbox {c}$$ W + c production cross section and the cross section ratio $$R_\textrm{c}^{\pm }= \sigma ({\hbox {W}}^{+}+\bar{\text {c}})/\sigma (\hbox {W}^{-}+{\textrm{c}})$$ R c ± = σ ( W + + c ¯ ) / σ ( W - + c ) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in $$R_\textrm{c}^{\pm }= 0.950 \pm 0.005\,\text {(stat)} \pm 0.010 \,\text {(syst)} $$ R c ± = 0.950 ± 0.005 (stat) ± 0.010 (syst) . The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.
Date issued
2024-01-10
URI
https://hdl.handle.net/1721.1/153315
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Springer Berlin Heidelberg
Citation
The European Physical Journal C. 2024 Jan 10;84(1):27
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.