Show simple item record

dc.contributor.authorLaPotin, Alina
dc.contributor.authorSchulte, Kevin L
dc.contributor.authorSteiner, Myles A
dc.contributor.authorBuznitsky, Kyle
dc.contributor.authorKelsall, Colin C
dc.contributor.authorFriedman, Daniel J
dc.contributor.authorTervo, Eric J
dc.contributor.authorFrance, Ryan M
dc.contributor.authorYoung, Michelle R
dc.contributor.authorRohskopf, Andrew
dc.contributor.authorVerma, Shomik
dc.contributor.authorWang, Evelyn N
dc.contributor.authorHenry, Asegun
dc.date.accessioned2024-01-18T21:27:37Z
dc.date.available2024-01-18T21:27:37Z
dc.date.issued2022-04-14
dc.identifier.urihttps://hdl.handle.net/1721.1/153383
dc.description.abstractThermophotovoltaics (TPVs) convert predominantly infrared wavelength light to electricity via the photovoltaic effect, and can enable approaches to energy storage<jats:sup>1,2</jats:sup> and conversion<jats:sup>3–9</jats:sup> that use higher temperature heat sources than the turbines that are ubiquitous in electricity production today. Since the first demonstration of 29% efficient TPVs (Fig. 1a) using an integrated back surface reflector and a tungsten emitter at 2,000 °C (ref. <jats:sup>10</jats:sup>), TPV fabrication and performance have improved<jats:sup>11,12</jats:sup>. However, despite predictions that TPV efficiencies can exceed 50% (refs. <jats:sup>11,13,14</jats:sup>), the demonstrated efficiencies are still only as high as 32%, albeit at much lower temperatures below 1,300 °C (refs. <jats:sup>13–15</jats:sup>). Here we report the fabrication and measurement of TPV cells with efficiencies of more than 40% and experimentally demonstrate the efficiency of high-bandgap tandem TPV cells. The TPV cells are two-junction devices comprising III–V materials with bandgaps between 1.0 and 1.4 eV that are optimized for emitter temperatures of 1,900–2,400 °C. The cells exploit the concept of band-edge spectral filtering to obtain high efficiency, using highly reflective back surface reflectors to reject unusable sub-bandgap radiation back to the emitter. A 1.4/1.2 eV device reached a maximum efficiency of (41.1 ± 1)% operating at a power density of 2.39 W cm<jats:sup>–2</jats:sup> and an emitter temperature of 2,400 °C. A 1.2/1.0 eV device reached a maximum efficiency of (39.3 ± 1)% operating at a power density of 1.8 W cm<jats:sup>–2</jats:sup> and an emitter temperature of 2,127 °C. These cells can be integrated into a TPV system for thermal energy grid storage to enable dispatchable renewable energy. This creates a pathway for thermal energy grid storage to reach sufficiently high efficiency and sufficiently low cost to enable decarbonization of the electricity grid.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41586-022-04473-yen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Natureen_US
dc.titleThermophotovoltaic efficiency of 40%en_US
dc.typeArticleen_US
dc.identifier.citationLaPotin, A., Schulte, K.L., Steiner, M.A. et al. Thermophotovoltaic efficiency of 40%. Nature 604, 287–291 (2022).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalNatureen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-01-18T21:15:59Z
dspace.orderedauthorsLaPotin, A; Schulte, KL; Steiner, MA; Buznitsky, K; Kelsall, CC; Friedman, DJ; Tervo, EJ; France, RM; Young, MR; Rohskopf, A; Verma, S; Wang, EN; Henry, Aen_US
dspace.date.submission2024-01-18T21:16:05Z
mit.journal.volume604en_US
mit.journal.issue7905en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record