MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning approach for GNSS geodetic velocity estimation

Author(s)
Özarpacı, Seda; Kılıç, Batuhan; Bayrak, Onur C.; Taşkıran, Murat; Doğan, Uğur; Floyd, Michael; ... Show more Show less
Thumbnail
Download10291_2023_Article_1607.pdf (8.377Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This study aimed to investigate the performance of machine learning (ML) algorithms in determining horizontal velocity at specific points using the current Global Navigation Satellite System (GNSS) velocity field. To achieve this objective, the analysis utilized the most comprehensive velocity field available for Turkey, where 70% of the GNSS velocities was allocated for training the ML algorithms, while the remaining 30% was used for testing. Contrary to the previous research, the significance of considering the tectonic structure within the study area was emphasized at this point. To determine the tectonic structure of the horizontal velocity field in the region, a preliminary clustering procedure was conducted. Subsequently, distinct ML algorithms were trained using velocity fields associated with different tectonic plates. Moreover, to investigate the impact of the tectonic domain, the entire velocity field was also tested using ML algorithms without considering the tectonic structure. Four different ML algorithms, namely, Gradient Boosting Machines (GBM), LightGBM, Random Forest (RF), and eXtreme Gradient Boosting Machines (XGBoost), were employed to estimate the horizontal velocities (east and north components). The findings imply that incorporating the tectonic structure improved the performance of machine learning predictions, as indicated by the GBM algorithm's decreased root-mean-square error values. In addition, when the tectonic structure was taken into account, the accuracy assessment values for the RF and XGBoost algorithms in the east component decreased significantly. In terms of predicting GNSS velocities, the RF algorithm exhibited the lowest root-mean-square error values compared to other algorithms. The horizontal velocity differences between averages of the reference velocity field and the RF velocity estimates are maximum 0.4 mm/yr.
Date issued
2024-01-25
URI
https://hdl.handle.net/1721.1/153409
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Springer Berlin Heidelberg
Citation
GPS Solutions. 2024 Jan 25;28(2):65
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.