Smart Optimization of Semiconductors in Photovoltaic-Thermoelectric Systems Using Recurrent Neural Networks
Author(s)
Alghamdi, Hisham; Maduabuchi, Chika; Okoli, Kingsley; Albaker, Abdullah; Alatawi, Ibrahim; Alsafran, Ahmed S.; Alkhedher, Mohammad; Chen, Wei-Hsin; ... Show more Show less
DownloadIJER.2023.6927245.pdf (1.345Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
In the relentless pursuit of sustainable energy solutions, this study pioneers an innovative approach to integrating thermoelectric generators (TEGs) and photovoltaic (PV) modules within hybrid systems. Uniquely, it employs neural networks for an exhaustive analysis of a plethora of parameters, including a diverse spectrum of semiconductor materials, cooling film coefficients, TE leg dimensions, ambient temperature, wind speed, and PV emissivity. Leveraging a rich dataset, the neural network is meticulously trained, revealing intricate interdependencies among parameters and their consequential impact on power generation and the efficiencies of TEG, PV, and integrated PV-TE systems. Notably, the hybrid system witnesses a striking 23.1% augmentation in power output, escalating from 0.26 W to 0.32 W, and a 20% ascent in efficiency, from 14.68% to 17.62%. This groundbreaking research illuminates the transformative potential of integrating TEGs and PV modules and the paramountcy of multifaceted parameter optimization. Moreover, it exemplifies the deployment of machine learning as a powerful tool for enhancing hybrid energy systems. This study, thus, stands as a beacon, heralding a new chapter in sustainable energy research and propelling further innovations in hybrid system design and optimization. Through its novel approach, it contributes indispensably to the arsenal of clean energy solutions.
Date issued
2023-07-07Department
Massachusetts Institute of Technology. Department of Nuclear Science and EngineeringPublisher
Hindawi
Citation
Hisham Alghamdi, Chika Maduabuchi, Kingsley Okoli, et al., “Smart Optimization of Semiconductors in Photovoltaic-Thermoelectric Systems Using Recurrent Neural Networks,” International Journal of Energy Research, vol. 2023, Article ID 6927245, 18 pages, 2023. doi:10.1155/2023/6927245
Version: Final published version
Collections
The following license files are associated with this item: