Show simple item record

dc.contributor.authorZevin, Michael
dc.contributor.authorJackson, Corey B.
dc.contributor.authorDoctor, Zoheyr
dc.contributor.authorWu, Yunan
dc.contributor.authorØsterlund, Carsten
dc.contributor.authorJohnson, L. C.
dc.contributor.authorBerry, Christopher P. L.
dc.contributor.authorCrowston, Kevin
dc.contributor.authorCoughlin, Scott B.
dc.contributor.authorKalogera, Vicky
dc.contributor.authorBanagiri, Sharan
dc.contributor.authorDavis, Derek
dc.contributor.authorGlanzer, Jane
dc.contributor.authorHao, Renzhi
dc.contributor.authorKatsaggelos, Aggelos K.
dc.contributor.authorPatane, Oli
dc.contributor.authorSanchez, Jennifer
dc.contributor.authorSmith, Joshua
dc.contributor.authorSoni, Siddharth
dc.contributor.authorTrouille, Laura
dc.date.accessioned2024-02-05T16:22:23Z
dc.date.available2024-02-05T16:22:23Z
dc.date.issued2024-01-30
dc.identifier.urihttps://hdl.handle.net/1721.1/153459
dc.description.abstractThe Gravity Spy project aims to uncover the origins of glitches, transient bursts of noise that hamper analysis of gravitational-wave data. By using both the work of citizen-science volunteers and machine learning algorithms, the Gravity Spy project enables reliable classification of glitches. Citizen science and machine learning are intrinsically coupled within the Gravity Spy framework, with machine learning classifications providing a rapid first-pass classification of the dataset and enabling tiered volunteer training, and volunteer-based classifications verifying the machine classifications, bolstering the machine learning training set and identifying new morphological classes of glitches. These classifications are now routinely used in studies characterizing the performance of the LIGO gravitational-wave detectors. Providing the volunteers with a training framework that teaches them to classify a wide range of glitches, as well as additional tools to aid their investigations of interesting glitches, empowers them to make discoveries of new classes of glitches. This demonstrates that, when giving suitable support, volunteers can go beyond simple classification tasks to identify new features in data at a level comparable to domain experts. The Gravity Spy project is now providing volunteers with more complicated data that includes auxiliary monitors of the detector to identify the root cause of glitches.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjp/s13360-023-04795-4en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleGravity Spy: lessons learned and a path forwarden_US
dc.typeArticleen_US
dc.identifier.citationThe European Physical Journal Plus. 2024 Jan 30;139(1):100en_US
dc.contributor.departmentLIGO (Observatory : Massachusetts Institute of Technology)
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-02-04T04:21:59Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-02-04T04:21:59Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record