Show simple item record

dc.contributor.authorDas Gupta, Shuvomoy
dc.contributor.authorVan Parys, Bart P. G.
dc.contributor.authorRyu, Ernest K.
dc.date.accessioned2024-02-16T15:01:49Z
dc.date.available2024-02-16T15:01:49Z
dc.date.issued2023-06-07
dc.identifier.issn0025-5610
dc.identifier.issn1436-4646
dc.identifier.urihttps://hdl.handle.net/1721.1/153536
dc.description.abstractWe present the Branch-and-Bound Performance Estimation Programming (BnB-PEP), a unified methodology for constructing optimal first-order methods for convex and nonconvex optimization. BnB-PEP poses the problem of finding the optimal optimization method as a nonconvex but practically tractable quadratically constrained quadratic optimization problem and solves it to certifiable global optimality using a customized branch-and-bound algorithm. By directly confronting the nonconvexity, BnB-PEP offers significantly more flexibility and removes the many limitations of the prior methodologies. Our customized branch-and-bound algorithm, through exploiting specific problem structures, outperforms the latest off-the-shelf implementations by orders of magnitude, accelerating the solution time from hours to seconds and weeks to minutes. We apply BnB-PEP to several setups for which the prior methodologies do not apply and obtain methods with bounds that improve upon prior state-of-the-art results. Finally, we use the BnB-PEP methodology to find proofs with potential function structures, thereby systematically generating analytical convergence proofs.en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/s10107-023-01973-1en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.subjectGeneral Mathematicsen_US
dc.subjectSoftwareen_US
dc.titleBranch-and-bound performance estimation programming: a unified methodology for constructing optimal optimization methodsen_US
dc.typeArticleen_US
dc.identifier.citationDas Gupta, S., Van Parys, B.P.G. & Ryu, E.K. Branch-and-bound performance estimation programming: a unified methodology for constructing optimal optimization methods. Math. Program. 204, 567–639 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-02-16T04:25:45Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society
dspace.embargo.termsY
dspace.date.submission2024-02-16T04:25:45Z
mit.journal.volume204en_US
mit.journal.issue1-2en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record