MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unique continuation problem on RCD Spaces. I

Author(s)
Deng, Qin; Zhao, Xinrui
Thumbnail
Download10711_2024_Article_890.pdf (320.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
In this note we establish the weak unique continuation theorem for caloric functions on compact <jats:italic>RCD</jats:italic>(<jats:italic>K</jats:italic>, 2) spaces and show that there exists an <jats:italic>RCD</jats:italic>(<jats:italic>K</jats:italic>, 4) space on which there exist non-trivial eigenfunctions of the Laplacian and non-stationary solutions of the heat equation which vanish up to infinite order at one point . We also establish frequency estimates for eigenfunctions and caloric functions on the metric horn. In particular, this gives a strong unique continuation type result on the metric horn for harmonic functions with a high rate of decay at the horn tip, where it is known that the standard strong unique continuation property fails.
Date issued
2024-02-15
URI
https://hdl.handle.net/1721.1/153545
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Science and Business Media LLC
Citation
Geometriae Dedicata. 2024 Feb 15;218(2):42
Version: Final published version
ISSN
0046-5755
1572-9168
Keywords
Geometry and Topology

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.