Show simple item record

dc.contributor.authorChang, Celesta S
dc.contributor.authorKim, Ki Seok
dc.contributor.authorPark, Bo-In
dc.contributor.authorChoi, Joonghoon
dc.contributor.authorKim, Hyunseok
dc.contributor.authorJeong, Junseok
dc.contributor.authorBarone, Matthew
dc.contributor.authorParker, Nicholas
dc.contributor.authorLee, Sangho
dc.contributor.authorZhang, Xinyuan
dc.contributor.authorLu, Kuangye
dc.contributor.authorSuh, Jun Min
dc.contributor.authorKim, Jekyung
dc.contributor.authorLee, Doyoon
dc.contributor.authorHan, Ne Myo
dc.contributor.authorMoon, Mingi
dc.contributor.authorLee, Yun Seog
dc.contributor.authorKim, Dong-Hwan
dc.contributor.authorSchlom, Darrell G
dc.contributor.authorHong, Young Joon
dc.contributor.authorKim, Jeehwan
dc.date.accessioned2024-02-22T21:56:17Z
dc.date.available2024-02-22T21:56:17Z
dc.date.issued2023-10-20
dc.identifier.urihttps://hdl.handle.net/1721.1/153557
dc.description.abstractThe concept of remote epitaxy involves a two-dimensional van der Waals layer covering the substrate surface, which still enable adatoms to follow the atomic motif of the underlying substrate. The mode of growth must be carefully defined as defects, e.g., pinholes, in two-dimensional materials can allow direct epitaxy from the substrate, which, in combination with lateral epitaxial overgrowth, could also form an epilayer. Here, we show several unique cases that can only be observed for remote epitaxy, distinguishable from other two-dimensional material-based epitaxy mechanisms. We first grow BaTiO <jats:sub>3</jats:sub> on patterned graphene to establish a condition for minimizing epitaxial lateral overgrowth. By observing entire nanometer-scale nuclei grown aligned to the substrate on pinhole-free graphene confirmed by high-resolution scanning transmission electron microscopy, we visually confirm that remote epitaxy is operative at the atomic scale. Macroscopically, we also show variations in the density of GaN microcrystal arrays that depend on the ionicity of substrates and the number of graphene layers.en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Scienceen_US
dc.relation.isversionof10.1126/sciadv.adj5379en_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0en_US
dc.sourceAmerican Association for the Advancement of Scienceen_US
dc.titleRemote epitaxial interaction through grapheneen_US
dc.typeArticleen_US
dc.identifier.citationCelesta S. Chang et al. ,Remote epitaxial interaction through graphene.Sci. Adv.9,eadj5379(2023).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-02-22T21:50:12Z
dspace.orderedauthorsChang, CS; Kim, KS; Park, B-I; Choi, J; Kim, H; Jeong, J; Barone, M; Parker, N; Lee, S; Zhang, X; Lu, K; Suh, JM; Kim, J; Lee, D; Han, NM; Moon, M; Lee, YS; Kim, D-H; Schlom, DG; Hong, YJ; Kim, Jen_US
dspace.date.submission2024-02-22T21:50:17Z
mit.journal.volume9en_US
mit.journal.issue42en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record