Show simple item record

dc.contributor.authorKim, Hyunseok
dc.contributor.authorLee, Sangho
dc.contributor.authorShin, Jiho
dc.contributor.authorZhu, Menglin
dc.contributor.authorAkl, Marx
dc.contributor.authorLu, Kuangye
dc.contributor.authorHan, Ne Myo
dc.contributor.authorBaek, Yongmin
dc.contributor.authorChang, Celesta S.
dc.contributor.authorSuh, Jun Min
dc.contributor.authorKim, Ki Seok
dc.contributor.authorPark, Bo-In
dc.contributor.authorZhang, Yanming
dc.contributor.authorChoi, Chanyeol
dc.contributor.authorShin, Heechang
dc.contributor.authorYu, He
dc.contributor.authorMeng, Yuan
dc.contributor.authorKim, Seung-Il
dc.contributor.authorSeo, Seungju
dc.contributor.authorLee, Kyusang
dc.contributor.authorKum, Hyun S.
dc.contributor.authorLee, Jae-Hyun
dc.contributor.authorAhn, Jong-Hyun
dc.contributor.authorBae, Sang-Hoon
dc.contributor.authorHwang, Jinwoo
dc.contributor.authorShi, Yunfeng
dc.contributor.authorKim, Jeehwan
dc.date.accessioned2024-02-23T20:22:49Z
dc.date.available2024-02-23T20:22:49Z
dc.date.issued2022-09-22
dc.identifier.issn1748-3387
dc.identifier.issn1748-3395
dc.identifier.urihttps://hdl.handle.net/1721.1/153569
dc.description.abstractHeterogeneous integration of single-crystal materials offers great opportunities for advanced device platforms and functional systems1. Although substantial efforts have been made to co-integrate active device layers by heteroepitaxy, the mismatch in lattice polarity and lattice constants has been limiting the quality of the grown materials2. Layer transfer methods as an alternative approach, on the other hand, suffer from the limited availability of transferrable materials and transfer-process-related obstacles3. Here, we introduce graphene nanopatterns as an advanced heterointegration platform that allows the creation of a broad spectrum of freestanding single-crystalline membranes with substantially reduced defects, ranging from non-polar materials to polar materials and from low-bandgap to high-bandgap semiconductors. Additionally, we unveil unique mechanisms to substantially reduce crystallographic defects such as misfit dislocations, threading dislocations and antiphase boundaries in lattice- and polarity-mismatched heteroepitaxial systems, owing to the flexibility and chemical inertness of graphene nanopatterns. More importantly, we develop a comprehensive mechanics theory to precisely guide cracks through the graphene layer, and demonstrate the successful exfoliation of any epitaxial overlayers grown on the graphene nanopatterns. Thus, this approach has the potential to revolutionize the heterogeneous integration of dissimilar materials by widening the choice of materials and offering flexibility in designing heterointegrated systems.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41565-022-01200-6en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceU.S. Department of Energy Office of Scientific and Technical Informationen_US
dc.subjectElectrical and Electronic Engineeringen_US
dc.subjectCondensed Matter Physicsen_US
dc.subjectGeneral Materials Scienceen_US
dc.subjectBiomedical Engineeringen_US
dc.subjectAtomic and Molecular Physics, and Opticsen_US
dc.subjectBioengineeringen_US
dc.titleGraphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reductionen_US
dc.typeArticleen_US
dc.identifier.citationKim, H., Lee, S., Shin, J. et al. Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction. Nat. Nanotechnol. 17, 1054–1059 (2022).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalNature Nanotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-02-23T20:07:16Z
dspace.orderedauthorsKim, H; Lee, S; Shin, J; Zhu, M; Akl, M; Lu, K; Han, NM; Baek, Y; Chang, CS; Suh, JM; Kim, KS; Park, B-I; Zhang, Y; Choi, C; Shin, H; Yu, H; Meng, Y; Kim, S-I; Seo, S; Lee, K; Kum, HS; Lee, J-H; Ahn, J-H; Bae, S-H; Hwang, J; Shi, Y; Kim, Jen_US
dspace.date.submission2024-02-23T20:07:19Z
mit.journal.volume17en_US
mit.journal.issue10en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record