dc.contributor.author | Nam, Danny | |
dc.contributor.author | Sly, Allan | |
dc.contributor.author | Sohn, Youngtak | |
dc.date.accessioned | 2024-02-26T16:43:26Z | |
dc.date.available | 2024-02-26T16:43:26Z | |
dc.date.issued | 2024-02-23 | |
dc.identifier.issn | 0010-3616 | |
dc.identifier.issn | 1432-0916 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/153572 | |
dc.description.abstract | Continuing our earlier work in Nam et al. (One-step replica symmetry breaking of random regular NAE-SAT I, <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://arxiv.org/abs/2011.14270">arXiv:2011.14270</jats:ext-link>, 2020), we study the random regular <jats:italic>k</jats:italic>-<jats:sc>nae-sat</jats:sc> model in the condensation regime. In Nam et al. (2020), the (1<jats:sc>rsb</jats:sc>) properties of the model were established with positive probability. In this paper, we improve the result to probability arbitrarily close to one. To do so, we introduce a new framework which is the synthesis of two approaches: the small subgraph conditioning and a variance decomposition technique using Doob martingales and discrete Fourier analysis. The main challenge is a delicate integration of the two methods to overcome the difficulty arising from applying the moment method to an unbounded state space. | en_US |
dc.publisher | Springer Science and Business Media LLC | en_US |
dc.relation.isversionof | 10.1007/s00220-023-04868-6 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.subject | Mathematical Physics | en_US |
dc.subject | Statistical and Nonlinear Physics | en_US |
dc.title | One-Step Replica Symmetry Breaking of Random Regular NAE-SAT II | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Nam, D., Sly, A. & Sohn, Y. One-Step Replica Symmetry Breaking of Random Regular NAE-SAT II. Commun. Math. Phys. 405, 61 (2024). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.identifier.mitlicense | PUBLISHER_CC | |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2024-02-25T04:12:46Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s) | |
dspace.embargo.terms | N | |
dspace.date.submission | 2024-02-25T04:12:46Z | |
mit.journal.volume | 405 | en_US |
mit.journal.issue | 3 | en_US |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |