MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semantic knowledge management system for design documentation with heterogeneous data using machine learning

Author(s)
Gammack, Jack; Akay, Haluk; Ceylan, Ceylan; Kim, Sang-Gook
Thumbnail
Download1-s2.0-S2212827122006680-main.pdf (1.685Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-No Derivatives http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Design documentation is presumed to contain massive amounts of valuable information and expert knowledge that is useful for learning from the past successes and failures. However, the current practice of documenting design in most industries does not result in big data that can support a true digital transformation of enterprise. Very little information on concepts and decisions in early product design has been digitally captured, and the access and retrieval of them via taxonomy-based knowledge management systems are very challenging because most rule-based classification and search systems cannot concurrently process heterogeneous data (text, figures, tables, references). When experts retire or leave a design unit, industry often cannot benefit from past knowledge for future product design, and is left to reinvent the wheel repeatedly. In this work, we present AI-based Natural Language Processing (NLP) models which are trained for contextually representing technical documents containing texts, figures and tables, to do a semantic search for the retrieval of relevant data across large corpora of documents. By connecting textual and non-textual data through the use of an associative database, the semantic search question-answering system we developed can provide more comprehensive answers in the context of users’ questions. For the demonstration and assessment of this model, the semantic search question-answering system is applied to the Intergovernmental Panel on Climate Change (IPCC) Special Report 2019, which is more than 600 pages long and difficult to read and understand, even by most experts. Users can input custom queries relating to climate change concerns and receive evidence from the report that is contextually meaningful. We expect this method can transform current repositories of design documentation of heterogeneous data forms into structured knowledge-bases which can return relevant information efficiently as well as can evolve to embody manageable big data for the true digital transformation of design.
Date issued
2022
URI
https://hdl.handle.net/1721.1/153622
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Procedia CIRP
Publisher
Elsevier BV
Citation
Gammack, Jack, Akay, Haluk, Ceylan, Ceylan and Kim, Sang-Gook. 2022. "Semantic knowledge management system for design documentation with heterogeneous data using machine learning." Procedia CIRP, 109.
Version: Final published version
ISSN
2212-8271
Keywords
General Medicine

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.