MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning only a handful of latent variables produces neural-aligned CNN models of the ventral stream

Author(s)
Xie, Yudi; Alter, Esther; Schwartz, Jeremy; DiCarlo, James J.
Thumbnail
DownloadCOSYNE2024_multitask_vision_dspace.pdf (2.514Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Description
Computational and Systems Neuroscience (COSYNE) Lisbon, PT; 2024.
Date issued
2024-02-29
URI
https://hdl.handle.net/1721.1/153744
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Citation
Xie, Yudi, Alter, Esther, Schwartz, Jeremy and DiCarlo, James J. 2024. "Learning only a handful of latent variables produces neural-aligned CNN models of the ventral stream."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.