MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SLAM-Supported Self-Training for 6D Object Pose Estimation

Author(s)
Lu, Ziqi; Zhang, Yihao; Doherty, Kevin; Severinsen, Odin; Yang, Ethan; Leonard, John; ... Show more Show less
Thumbnail
Download2203.04424.pdf (4.222Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Recent progress in object pose prediction provides a promising path for robots to build object-level scene representations during navigation. However, as we deploy a robot in novel environments, the out-of-distribution data can degrade the prediction performance. To mitigate the domain gap, we can potentially perform self-training in the target domain, using predictions on robot-captured images as pseudo labels to fine-tune the object pose estimator. Unfortunately, the pose predictions are typically outlier-corrupted, and it is hard to quantify their uncertainties, which can result in low-quality pseudo-labeled data. To address the problem, we propose a SLAM-supported self-training method, leveraging robot understanding of the 3D scene geometry to enhance the object pose inference performance. Combining the pose predictions with robot odometry, we formulate and solve pose graph optimization to refine the object pose estimates and make pseudo labels more consistent across frames. We incorporate the pose prediction covariances as variables into the optimization to automatically model their uncertainties. This automatic covariance tuning (ACT) process can fit 6D pose prediction noise at the component level, leading to higher-quality pseudo training data. We test our method with the deep object pose estimator (DOPE) on the YCB video dataset and in real robot experiments. It achieves respectively 34.3% and 17.8% accuracy enhancements in pose prediction on the two tests.
Description
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) October 23-27, 2022, Kyoto, Japan
Date issued
2022-10-23
URI
https://hdl.handle.net/1721.1/153750
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
IEEE
Citation
Lu, Ziqi, Zhang, Yihao, Doherty, Kevin, Severinsen, Odin, Yang, Ethan et al. 2022. "SLAM-Supported Self-Training for 6D Object Pose Estimation."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.