Show simple item record

dc.contributor.authorKuo, Yen-Ling
dc.contributor.authorHuang, Xin
dc.contributor.authorBarbu, Andrei
dc.contributor.authorMcGill, Stephen G.
dc.contributor.authorKatz, Boris
dc.contributor.authorLeonard, John J.
dc.contributor.authorRosman, Guy
dc.date.accessioned2024-03-14T17:10:45Z
dc.date.available2024-03-14T17:10:45Z
dc.date.issued2022-05-23
dc.identifier.urihttps://hdl.handle.net/1721.1/153753
dc.description2022 IEEE International Conference on Robotics and Automation (ICRA) May 23-27, 2022. Philadelphia, PA, USAen_US
dc.description.abstractLanguage allows humans to build mental models that interpret what is happening around them resulting in more accurate long-term predictions. We present a novel trajectory prediction model that uses linguistic intermediate representations to forecast trajectories, and is trained using trajectory samples with partially-annotated captions. The model learns the meaning of each of the words without direct per-word supervision. At inference time, it generates a linguistic description of trajectories which captures maneuvers and interactions over an extended time interval. This generated description is used to refine predictions of the trajectories of multiple agents. We train and validate our model on the Argoverse dataset, and demonstrate improved accuracy results in trajectory prediction. In addition, our model is more interpretable: it presents part of its reasoning in plain language as captions, which can aid model development and can aid in building confidence in the model before deploying it.en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/icra46639.2022.9811928en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearxiven_US
dc.titleTrajectory Prediction with Linguistic Representationsen_US
dc.typeArticleen_US
dc.identifier.citationKuo, Yen-Ling, Huang, Xin, Barbu, Andrei, McGill, Stephen G., Katz, Boris et al. 2022. "Trajectory Prediction with Linguistic Representations."
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentCenter for Brains, Minds, and Machines
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2024-03-14T16:53:35Z
dspace.orderedauthorsKuo, Y-L; Huang, X; Barbu, A; McGill, SG; Katz, B; Leonard, JJ; Rosman, Gen_US
dspace.date.submission2024-03-14T16:53:37Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record