MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-Throughput Extraction of Phase–Property Relationships from Literature Using Natural Language Processing and Large Language Models

Author(s)
Montanelli, Luca; Venugopal, Vineeth; Olivetti, Elsa A.; Latypov, Marat I.
Thumbnail
Download40192_2024_Article_344.pdf (1.933Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Consolidating published research on aluminum alloys into insights about microstructure–property relationships can simplify and reduce the costs involved in alloy design. One critical design consideration for many heat-treatable alloys deriving superior properties from precipitation are phases as key microstructure constituents because they can have a decisive impact on the engineering properties of alloys. Here, we present a computational framework for high-throughput extraction of phases and their impact on properties from scientific papers. Our framework includes transformer-based and large language models to identify sentences with phase-property information in papers, recognize phase and property entities, and extract phase-property relationships and their “sentiment.” We demonstrate the application of our framework on aluminum alloys, for which we build a database of 7,675 phase–property relationships extracted from a corpus of almost 5000 full-text papers. We comment on the extracted relationships based on common metallurgical knowledge.
Date issued
2024-03-19
URI
https://hdl.handle.net/1721.1/153929
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Integrating Materials and Manufacturing Innovation
Publisher
Springer International Publishing
Citation
Montanelli, L., Venugopal, V., Olivetti, E.A. et al. High-Throughput Extraction of Phase–Property Relationships from Literature Using Natural Language Processing and Large Language Models. Integr Mater Manuf Innov (2024). https://doi.org/10.1007/s40192-024-00344-8
Version: Final published version
ISSN
2193-9764
2193-9772
Keywords
Industrial and Manufacturing Engineering, General Materials Science

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.