Show simple item record

dc.contributor.authorFeng, Ping
dc.contributor.authorDong, Kang
dc.contributor.authorXu, Yaolin
dc.contributor.authorZhang, Xia
dc.contributor.authorJia, Haojun
dc.contributor.authorPrell, Henrik
dc.contributor.authorTovar, Michael
dc.contributor.authorManke, Ingo
dc.contributor.authorLiu, Fuyao
dc.contributor.authorXiang, Hengxue
dc.contributor.authorZhu, Meifang
dc.contributor.authorLu, Yan
dc.date.accessioned2024-03-25T15:30:47Z
dc.date.available2024-03-25T15:30:47Z
dc.date.issued2024-03-18
dc.identifier.issn2524-7921
dc.identifier.issn2524-793X
dc.identifier.urihttps://hdl.handle.net/1721.1/153930
dc.description.abstractLithium–sulfur (Li–S) batteries can potentially outperform state-of-the-art lithium-ion batteries, but their further development is hindered by challenges, such as poor electrical conductivity of sulfur and lithium sulfide, shuttle phenomena of lithium polysulfides, and uneven distribution of solid reaction products. Herein, free-standing carbon nanofibers embedded with oxygen-deficient titanium dioxide nanoparticles (TiO2-x/CNFs) has been fabricated by a facile electrospinning method, which can support active electrode materials without the need for conductive carbon and binders. By carefully controlling the calcination temperature, a mixed phase of rutile and anatase was achieved in the TiO2-x nanoparticles. The hybridization of anatase/rutile TiO2-x and the oxygen vacancy in TiO2-x play a crucial role in enhancing the conversion kinetics of lithium polysulfides (LiPSs), mitigating the shuttle effect of LiPSs, and enhancing the overall efficiency of the Li–S battery system. Additionally, the free-standing TiO2-x/CNFs facilitate uniform deposition of reaction products during cycling, as confirmed by synchrotron X-ray imaging. As a result of these advantageous features, the TiO2-x/CNFs-based cathode demonstrates an initial specific discharge capacity of 787.4 mAh g−1 at 0.5 C in the Li–S coin cells, and a final specific discharge capacity of 584.0 mAh g−1 after 300 cycles. Furthermore, soft-packaged Li–S pouch cells were constructed using the TiO2-x/CNFs-based cathode, exhibiting excellent mechanical properties at different bending states. This study presents an innovative approach to developing free-standing sulfur host materials that are well suited for flexible Li–S batteries as well as for various other energy applications. Graphical Abstracten_US
dc.publisherSpringer Nature Singaporeen_US
dc.relation.isversionof10.1007/s42765-024-00380-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Nature Singaporeen_US
dc.subjectPolymers and Plasticsen_US
dc.subjectMaterials Chemistryen_US
dc.subjectElectronic, Optical and Magnetic Materialsen_US
dc.subjectMaterials Science (miscellaneous)en_US
dc.titleEfficient and Homogenous Precipitation of Sulfur Within a 3D Electrospun Heterocatalytic Rutile/Anatase TiO2-x Framework in Lithium–Sulfur Batteriesen_US
dc.typeArticleen_US
dc.identifier.citationFeng, P., Dong, K., Xu, Y. et al. Efficient and Homogenous Precipitation of Sulfur Within a 3D Electrospun Heterocatalytic Rutile/Anatase TiO2-x Framework in Lithium–Sulfur Batteries. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00380-1en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.relation.journalAdvanced Fiber Materialsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-03-24T04:18:07Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-03-24T04:18:07Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record