Show simple item record

dc.contributor.authorKiani, Bobak Toussi
dc.contributor.authorDe Palma, Giacomo
dc.contributor.authorMarvian, Milad
dc.contributor.authorLiu, Zi-Wen
dc.contributor.authorLloyd, Seth
dc.date.accessioned2024-03-25T18:37:00Z
dc.date.available2024-03-25T18:37:00Z
dc.date.issued2022-07-04
dc.identifier.issn2058-9565
dc.identifier.urihttps://hdl.handle.net/1721.1/153938
dc.description.abstractQuantifying how far the output of a learning algorithm is from its target is an essential task in machine learning. However, in quantum settings, the loss landscapes of commonly used distance metrics often produce undesirable outcomes such as poor local minima and exponentially decaying gradients. To overcome these obstacles, we consider here the recently proposed quantum earth mover’s (EM) or Wasserstein-1 distance as a quantum analog to the classical EM distance. We show that the quantum EM distance possesses unique properties, not found in other commonly used quantum distance metrics, that make quantum learning more stable and efficient. We propose a quantum Wasserstein generative adversarial network (qWGAN) which takes advantage of the quantum EM distance and provides an efficient means of performing learning on quantum data. We provide examples where our qWGAN is capable of learning a diverse set of quantum data with only resources polynomial in the number of qubits.en_US
dc.language.isoen
dc.publisherIOP Publishingen_US
dc.relation.isversionof10.1088/2058-9565/ac79c9en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceIOP Publishingen_US
dc.subjectElectrical and Electronic Engineeringen_US
dc.subjectPhysics and Astronomy (miscellaneous)en_US
dc.subjectMaterials Science (miscellaneous)en_US
dc.subjectAtomic and Molecular Physics, and Opticsen_US
dc.titleLearning quantum data with the quantum earth mover’s distanceen_US
dc.typeArticleen_US
dc.identifier.citationBobak Toussi Kiani et al 2022 Quantum Sci. Technol. 7 045002.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalQuantum Science and Technologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-03-25T18:23:24Z
dspace.orderedauthorsKiani, BT; De Palma, G; Marvian, M; Liu, Z-W; Lloyd, Sen_US
dspace.date.submission2024-03-25T18:23:26Z
mit.journal.volume7en_US
mit.journal.issue4en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record