Block-encoding dense and full-rank kernels using hierarchical matrices: applications in quantum numerical linear algebra
Author(s)
Nguyen, Quynh T.; Kiani, Bobak T.; Lloyd, Seth
Downloadq-2022-12-13-876.pdf (2.150Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Many quantum algorithms for numerical linear algebra assume black-box access to a block-encoding of the matrix of interest, which is a strong assumption when the matrix is not sparse. Kernel matrices, which arise from discretizing a kernel function <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mo>&#x2032;</mml:mo></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>, have a variety of applications in mathematics and engineering. They are generally dense and full-rank. Classically, the celebrated fast multipole method performs matrix multiplication on kernel matrices of dimension <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> in time almost linear in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> by using the linear algebraic framework of hierarchical matrices. In light of this success, we propose a block-encoding scheme of the hierarchical matrix structure on a quantum computer. When applied to many physical kernel matrices, our method can improve the runtime of solving quantum linear systems of dimension <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>&#x03BA;</mml:mi><mml:mi>polylog</mml:mi><mml:mo>&#x2061;</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mfrac><mml:mi>N</mml:mi><mml:mi>&#x03B5;</mml:mi></mml:mfrac><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>&#x03BA;</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>&#x03B5;</mml:mi></mml:math> are the condition number and error bound of the matrix operation. This runtime is near-optimal and, in terms of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math>, exponentially improves over prior quantum linear systems algorithms in the case of dense and full-rank kernel matrices. We discuss possible applications of our methodology in solving integral equations and accelerating computations in N-body problems.
Date issued
2022-12-13Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Quantum
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Citation
Nguyen, Quynh T., Kiani, Bobak T. and Lloyd, Seth. 2022. "Block-encoding dense and full-rank kernels using hierarchical matrices: applications in quantum numerical linear algebra." Quantum, 6.
Version: Final published version
ISSN
2521-327X
Keywords
Physics and Astronomy (miscellaneous), Atomic and Molecular Physics, and Optics