Show simple item record

dc.contributor.authorOng, Mei-Sing
dc.contributor.authorSordillo, Joanne E.
dc.contributor.authorDahlin, Amber
dc.contributor.authorMcGeachie, Michael
dc.contributor.authorTantisira, Kelan
dc.contributor.authorWang, Alberta L.
dc.contributor.authorLasky-Su, Jessica
dc.contributor.authorBrilliant, Murray
dc.contributor.authorKitchner, Terrie
dc.contributor.authorRoden, Dan M.
dc.contributor.authorWeiss, Scott T.
dc.contributor.authorWu, Ann Chen
dc.date.accessioned2024-03-27T15:34:13Z
dc.date.available2024-03-27T15:34:13Z
dc.date.issued2024-02-25
dc.identifier.issn2075-4426
dc.identifier.urihttps://hdl.handle.net/1721.1/153948
dc.description.abstractBackground: Although inhaled corticosteroids (ICS) are the first-line therapy for patients with persistent asthma, many patients continue to have exacerbations. We developed machine learning models to predict the ICS response in patients with asthma. Methods: The subjects included asthma patients of European ancestry (<i>n</i> = 1371; 448 children; 916 adults). A genome-wide association study was performed to identify the SNPs associated with ICS response. Using the SNPs identified, two machine learning models were developed to predict ICS response: (1) least absolute shrinkage and selection operator (LASSO) regression and (2) random forest. Results: The LASSO regression model achieved an AUC of 0.71 (95% CI 0.67&ndash;0.76; sensitivity: 0.57; specificity: 0.75) in an independent test cohort, and the random forest model achieved an AUC of 0.74 (95% CI 0.70&ndash;0.78; sensitivity: 0.70; specificity: 0.68). The genes contributing to the prediction of ICS response included those associated with ICS responses in asthma (<i>TPSAB1, FBXL16</i>), asthma symptoms and severity (<i>ABCA7, CNN2, PTRN3,</i> and <i>BSG/CD147</i>), airway remodeling (<i>ELANE, FSTL3</i>), mucin production (<i>GAL3ST</i>), leukotriene synthesis (<i>GPX4</i>), allergic asthma (<i>ZFPM1, SBNO2</i>), and others. Conclusions: An accurate risk prediction of ICS response can be obtained using machine learning methods, with the potential to inform personalized treatment decisions. Further studies are needed to examine if the integration of richer phenotype data could improve risk prediction.en_US
dc.publisherMDPI AGen_US
dc.relation.isversionof10.3390/jpm14030246en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.subjectMedicine (miscellaneous)en_US
dc.titleMachine Learning Prediction of Treatment Response to Inhaled Corticosteroids in Asthmaen_US
dc.typeArticleen_US
dc.identifier.citationJournal of Personalized Medicine 14 (3): 246 (2024)en_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-03-27T13:15:37Z
dspace.date.submission2024-03-27T13:15:37Z
mit.journal.volume14en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record