Show simple item record

dc.contributor.authorSah, Ashwin
dc.contributor.authorSawhney, Mehtaab
dc.date.accessioned2024-04-01T18:13:37Z
dc.date.available2024-04-01T18:13:37Z
dc.date.issued2024-03-30
dc.identifier.issn0178-8051
dc.identifier.issn1432-2064
dc.identifier.urihttps://hdl.handle.net/1721.1/153985
dc.description.abstractAnswering a pair of questions of Conrey, Gabbard, Grant, Liu, and Morrison, we prove that a triplet of dice drawn from the multiset model are intransitive with probability $$1/4+o(1)$$ 1 / 4 + o ( 1 ) and the probability a random pair of dice tie tends toward $$\alpha n^{-1}$$ α n - 1 for an explicitly defined constant $$\alpha $$ α . This extends and sharpens the recent results of Polymath regarding the balanced sequence model. We further show the distribution of larger tournaments converges to a universal tournamenton in both models. This limit naturally arises from the discrete spectrum of a certain skew-symmetric operator (given by the kernel in the title acting on $$L^2([-1,1])$$ L 2 ( [ - 1 , 1 ] ) ). The limit exhibits a degree of symmetry and can be used to prove that, for instance, the limiting probability that $$A_i$$ A i beats $$A_{i+1}$$ A i + 1 for $$1\le i\le 4$$ 1 ≤ i ≤ 4 and that $$A_5$$ A 5 beats $$A_1$$ A 1 is $$1/32+o(1)$$ 1 / 32 + o ( 1 ) . Furthermore, the limiting tournamenton has range contained in the discrete set $$\{0,1\}$$ { 0 , 1 } . This proves that the associated tournamenton is non-quasirandom in a dramatic fashion, vastly extending work of Cornacchia and Hązła regarding the continuous analogue of the balanced sequence model. The proof is based on a reduction to conditional central limit theorems (related to work of Polymath), the use of a “Poissonization” style method to reduce to computations with independent random variables, and the systematic use of switching-based arguments to extract cancellations in Fourier estimates when establishing local limit-type estimates.en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/s00440-024-01270-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.subjectStatistics, Probability and Uncertaintyen_US
dc.subjectStatistics and Probabilityen_US
dc.subjectAnalysisen_US
dc.titleThe intransitive dice kernel: $$\frac{\mathbbm {1}_{x\ge y}-\mathbbm {1}_{x\le y}}{4} - \frac{3(x-y)(1+xy)}{8}$$en_US
dc.typeArticleen_US
dc.identifier.citationSah, Ashwin and Sawhney, Mehtaab. 2024. "The intransitive dice kernel: $$\frac{\mathbbm {1}_{x\ge y}-\mathbbm {1}_{x\le y}}{4} - \frac{3(x-y)(1+xy)}{8}$$." Probability Theory and Related Fields.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalProbability Theory and Related Fieldsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-03-31T03:16:20Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-03-31T03:16:20Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record