Show simple item record

dc.contributor.authorMacdonald, Jacob P.
dc.contributor.authorMallick, Rohit
dc.contributor.authorWollaber, Allan B.
dc.contributor.authorPeña, Jaime D.
dc.contributor.authorMcNeese, Nathan
dc.contributor.authorSiu, Ho Chit
dc.date.accessioned2024-04-03T19:00:51Z
dc.date.available2024-04-03T19:00:51Z
dc.date.issued2024-03-11
dc.identifier.isbn979-8-4007-0323-2
dc.identifier.urihttps://hdl.handle.net/1721.1/154055
dc.descriptionHRI ’24 Companion, March 11–14, 2024, Boulder, CO, USAen_US
dc.description.abstractThe Context-observant LLM-Enabled Autonomous Robots (CLEAR) platform offers a general solution for large language model (LLM)-enabled robot autonomy. CLEAR-controlled robots use natural language to perceive and interact with their environment: contextual description deriving from computer vision and optional human commands prompt intelligent LLM responses that map to robotic actions. By emphasizing prompting, system behavior is programmed without manipulating code, and unlike other LLM-based robot control methods, we do not perform any model fine-tuning. CLEAR employs off-the-shelf pre-trained machine learning models for controlling robots ranging from simulated quadcopters to terrestrial quadrupeds. We provide the open-source CLEAR platform, along with sample implementations for a Unity-based quadcopter and Boston Dynamics Spot® robot. Each LLM used, GPT-3.5, GPT-4, and LLaMA2, exhibited behavioral differences when embodied by CLEAR, contrasting in actuation preference, ability to apply new knowledge, and receptivity to human instruction. GPT-4 demonstrates best performance compared to GPT-3.5 and LLaMA2, showing successful task execution 97% of the time. The CLEAR platform contributes to HRI by increasing the usability of robotics for natural human interaction.en_US
dc.publisherACMen_US
dc.relation.isversionof10.1145/3610978.3640671en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceACMen_US
dc.titleLanguage, Camera, Autonomy! Prompt-engineered Robot Control for Rapidly Evolving Deploymenten_US
dc.typeArticleen_US
dc.identifier.citationMacdonald, Jacob P., Mallick, Rohit, Wollaber, Allan B., Peña, Jaime D., McNeese, Nathan et al. 2024. "Language, Camera, Autonomy! Prompt-engineered Robot Control for Rapidly Evolving Deployment."
dc.contributor.departmentLincoln Laboratory
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2024-04-01T07:46:49Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2024-04-01T07:46:49Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

No Thumbnail [100%x160]
Thumbnail

This item appears in the following Collection(s)

Show simple item record