Show simple item record

dc.contributor.authorFine, Elizabeth C.
dc.contributor.authorMacKinnon, Jennifer A.
dc.contributor.authorAlford, Matthew H.
dc.contributor.authorMiddleton, Leo
dc.contributor.authorTaylor, John
dc.contributor.authorMickett, John B.
dc.contributor.authorCole, Sylvia T.
dc.contributor.authorCouto, Nicole
dc.contributor.authorBoyer, Arnaud Le
dc.contributor.authorPeacock, Thomas
dc.date.accessioned2024-04-04T19:45:49Z
dc.date.available2024-04-04T19:45:49Z
dc.date.issued2022-02
dc.identifier.issn0022-3670
dc.identifier.issn1520-0485
dc.identifier.urihttps://hdl.handle.net/1721.1/154074
dc.description.abstractPacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of<jats:inline-formula id="IE1" />m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (<jats:italic>ε</jats:italic>) was elevated along the interleaving surfaces, with values up to 3 × 10<jats:sup>−8</jats:sup>W kg<jats:sup>−1</jats:sup>compared to background<jats:italic>ε</jats:italic>of less than 10<jats:sup>−9</jats:sup>W kg<jats:sup>−1</jats:sup>. Based on the distribution of<jats:italic>ε</jats:italic>as a function of density ratio<jats:italic>R<jats:sub>ρ</jats:sub></jats:italic>, we conclude that double-diffusive convection is largely responsible for the elevated<jats:italic>ε</jats:italic>observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m<jats:sup>−2</jats:sup>, with the localized flux above the uppermost warm layer elevated to 2–10 W m<jats:sup>−2</jats:sup>. Lateral fluxes are much larger, estimated between 1000 and 5000 W m<jats:sup>−2</jats:sup>, and set an overall decay rate for the intrusion of 1–5 years.en_US
dc.language.isoen
dc.publisherAmerican Meteorological Societyen_US
dc.relation.isversionof10.1175/jpo-d-21-0074.1en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Meteorological Societyen_US
dc.subjectOceanographyen_US
dc.titleDouble Diffusion, Shear Instabilities, and Heat Impacts of a Pacific Summer Water Intrusion in the Beaufort Seaen_US
dc.typeArticleen_US
dc.identifier.citationFine, E. C., and Coauthors, 2022: Double Diffusion, Shear Instabilities, and Heat Impacts of a Pacific Summer Water Intrusion in the Beaufort Sea. J. Phys. Oceanogr., 52, 189–203.en_US
dc.contributor.departmentWoods Hole Oceanographic Institution
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalJournal of Physical Oceanographyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-04-04T19:32:12Z
dspace.orderedauthorsFine, EC; MacKinnon, JA; Alford, MH; Middleton, L; Taylor, J; Mickett, JB; Cole, ST; Couto, N; Boyer, AL; Peacock, Ten_US
dspace.date.submission2024-04-04T19:32:15Z
mit.journal.volume52en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record