MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robotic right ventricle is a biohybrid platform that simulates right ventricular function in (patho)physiological conditions and intervention

Author(s)
Singh, Manisha; Bonnemain, Jean; Ozturk, Caglar; Ayers, Brian; Saeed, Mossab Y.; Quevedo-Moreno, Diego; Rowlett, Meagan; Park, Clara; Fan, Yiling; Nguyen, Christopher T.; Roche, Ellen T.; ... Show more Show less
Thumbnail
Downloads44161-023-00387-8.pdf (8.236Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The increasing recognition of the right ventricle (RV) necessitates the development of RV-focused interventions, devices and testbeds. In this study, we developed a soft robotic model of the right heart that accurately mimics RV biomechanics and hemodynamics, including free wall, septal and valve motion. This model uses a biohybrid approach, combining a chemically treated endocardial scaffold with a soft robotic synthetic myocardium. When connected to a circulatory flow loop, the robotic right ventricle (RRV) replicates real-time hemodynamic changes in healthy and pathological conditions, including volume overload, RV systolic failure and pressure overload. The RRV also mimics clinical markers of RV dysfunction and is validated using an in vivo porcine model. Additionally, the RRV recreates chordae tension, simulating papillary muscle motion, and shows the potential for tricuspid valve repair and replacement in vitro. This work aims to provide a platform for developing tools for research and treatment for RV pathophysiology.
Date issued
2023-12-08
URI
https://hdl.handle.net/1721.1/154097
Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Nature Cardiovascular Research
Publisher
Springer Science and Business Media LLC
Citation
Singh, M., Bonnemain, J., Ozturk, C. et al. Robotic right ventricle is a biohybrid platform that simulates right ventricular function in (patho)physiological conditions and intervention. Nat Cardiovasc Res 2, 1310–1326 (2023).
Version: Final published version
ISSN
2731-0590

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.