MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic actuation enhances transport and extends therapeutic lifespan in an implantable drug delivery platform

Author(s)
Whyte, William; Goswami, Debkalpa; Wang, Sophie X.; Fan, Yiling; Ward, Niamh A.; Levey, Ruth E.; Beatty, Rachel; Robinson, Scott T.; Sheppard, Declan; O’Connor, Raymond; Monahan, David S.; Trask, Lesley; Mendez, Keegan L.; Varela, Claudia E.; Horvath, Markus A.; Wylie, Robert; O’Dwyer, Joanne; Domingo-Lopez, Daniel A.; Rothman, Arielle S.; Duffy, Garry P.; Dolan, Eimear B.; Roche, Ellen T.; ... Show more Show less
Thumbnail
Downloads41467-022-32147-w.pdf (2.651Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Fibrous capsule (FC) formation, secondary to the foreign body response (FBR), impedes molecular transport and is detrimental to the long-term efficacy of implantable drug delivery devices, especially when tunable, temporal control is necessary. We report the development of an implantable mechanotherapeutic drug delivery platform to mitigate and overcome this host immune response using two distinct, yet synergistic soft robotic strategies. Firstly, daily intermittent actuation (cycling at 1 Hz for 5 minutes every 12 hours) preserves long-term, rapid delivery of a model drug (insulin) over 8 weeks of implantation, by mediating local immunomodulation of the cellular FBR and inducing multiphasic temporal FC changes. Secondly, actuation-mediated rapid release of therapy can enhance mass transport and therapeutic effect with tunable, temporal control. In a step towards clinical translation, we utilise a minimally invasive percutaneous approach to implant a scaled-up device in a human cadaveric model. Our soft actuatable platform has potential clinical utility for a variety of indications where transport is affected by fibrosis, such as the management of type 1 diabetes.
Date issued
2022-08-03
URI
https://hdl.handle.net/1721.1/154123
Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Massachusetts Institute of Technology. Department of Mechanical Engineering; Harvard University--MIT Division of Health Sciences and Technology
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC
Citation
Whyte, W., Goswami, D., Wang, S.X. et al. Dynamic actuation enhances transport and extends therapeutic lifespan in an implantable drug delivery platform. Nat Commun 13, 4496 (2022).
Version: Final published version
ISSN
2041-1723
Keywords
General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.