MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sections and Unirulings of Families over ℙ1

Author(s)
Pieloch, Alex
Thumbnail
Download39_2024_Article_679.pdf (2.383Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We consider morphisms $\pi : X \to \mathbb{P}^{1}$ of smooth projective varieties over $\mathbb{C}$ . We show that if π has at most one singular fibre, then X is uniruled and π admits sections. We reach the same conclusions, but with genus zero multisections instead of sections, if π has at most two singular fibres, and the first Chern class of X is supported in a single fibre of π. To achieve these result, we use action completed symplectic cohomology groups associated to compact subsets of convex symplectic domains. These groups are defined using Pardon’s virtual fundamental chains package for Hamiltonian Floer cohomology. In the above setting, we show that the vanishing of these groups implies the existence of unirulings and (multi)sections.
Date issued
2024-04-18
URI
https://hdl.handle.net/1721.1/154260
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Science and Business Media LLC
Citation
Pieloch, A. Sections and Unirulings of Families over P1. Geom. Funct. Anal. (2024).
Version: Final published version
ISSN
1016-443X
1420-8970
Keywords
Geometry and Topology, Analysis

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.