MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A high‐resolution AUV navigation framework with integrated communication and tracking for under‐ice deployments

Author(s)
Randeni, Supun; Schneider, Toby; Bhatt, EeShan C.; Víquez, Oscar A.; Schmidt, Henrik
Thumbnail
DownloadJournal of Field Robotics - 2022 - Randeni - A high‐resolution AUV navigation framework with integrated communication and.pdf (2.734Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We developed an environmentally adaptive under‐ice navigation framework that was deployed in the Arctic Beaufort Sea during the United States Navy Ice Exercise in March 2020 (ICEX20). This navigation framework contained two subsystems developed from the ground up: (1) an on‐board hydrodynamic model‐aided navigation (HydroMAN) engine, and (2) an environmentally and acoustically adaptive integrated communication and navigation network (ICNN) that provided acoustic navigation aiding to the former. The HydroMAN synthesized measurements from an inertial navigation system (INS), ice‐tracking Doppler velocity log (DVL), ICNN and pressure sensor into its self‐calibrating vehicle flight dynamic model to compute the navigation solution. The ICNN system, which consisted of four ice buoys outfitted with acoustic modems, trilaterated the vehicle position using the one‐way‐travel‐times (OWTT) of acoustic datagrams transmitted by the autonomous underwater vehicle (AUV) and received by the ice buoy network. The ICNN digested salinity and temperature information to provide model‐assisted real‐time OWTT range conversion to deliver accurate acoustic navigation updates to the HydroMAN. To decouple the contributions from the HydroMAN and ICNN subsystems towards a stable navigation solution, this article evaluates them separately: (1) HydroMAN was compared against DVL bottom‐track aided INS during pre‐ICEX20 engineering trials where both systems provided similar accuracy; (2) ICNN was evaluated by conducting a static experiment in the Arctic where the ICNN navigation updates were compared against GPS with ICNN error within low tens of meters. The joint HydroMAN‐ICNN framework was tested during ICEX20, which provided a nondiverging high‐resolution navigation solution—with the majority of error below 15 m—that facilitated a successful AUV recovery through a small ice hole after an 11 km untethered run in the upper and mid‐water column.
Date issued
2022-11-16
URI
https://hdl.handle.net/1721.1/154263
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Woods Hole Oceanographic Institution
Journal
Journal of Field Robotics
Publisher
Wiley
Citation
Randeni, S., Schneider, T., Bhatt, E.C., Víquez, O.A. & Schmidt, H. (2023) A high-resolution AUV navigation framework with integrated communication and tracking for under-ice deployments. Journal of Field Robotics, 40, 346–367.
Version: Final published version
ISSN
1556-4959
1556-4967
Keywords
Computer Science Applications, Control and Systems Engineering

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.