dc.contributor.author | Wang, Zhenshu | |
dc.contributor.author | Kang, Jin Soo | |
dc.contributor.author | Göhl, Daniel | |
dc.contributor.author | Paciok, Paul | |
dc.contributor.author | Gonçalves, Danelle S. | |
dc.contributor.author | Lim, Hyung‐Kyu | |
dc.contributor.author | Zanchet, Daniela | |
dc.contributor.author | Heggen, Marc | |
dc.contributor.author | Shao‐Horn, Yang | |
dc.contributor.author | Ledendecker, Marc | |
dc.contributor.author | Román‐Leshkov, Yuriy | |
dc.date.accessioned | 2024-04-24T21:16:44Z | |
dc.date.available | 2024-04-24T21:16:44Z | |
dc.date.issued | 2024-03-29 | |
dc.identifier.issn | 1614-6832 | |
dc.identifier.issn | 1614-6840 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/154277 | |
dc.description.abstract | Core–shell architectures provide great opportunities to improve catalytic activity, but achieving nanoparticle stability under electrochemical cycling remains challenging. Herein, core–shell nanoparticles comprising atomically thin Pt shells over earth‐abundant TaC cores are synthesized and used as highly durable electrocatalysts for the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) needed to drive direct methanol fuel cells (DMFCs). Characterization data show that a thin oxidic passivation layer protects the TaC core from undergoing dissolution in the fuel cell‐relevant potential range, enabling the use of partially covered Pt/TaC core–shell nanoparticles for MOR and ORR with high stability and enhanced catalytic performance. Specifically, at the anode the surface‐oxidized TaC further enhances MOR activity compared to conventional Pt nanoparticles. At the cathode, the Pt/TaC catalyst feature increases tolerance to methanol crossover. These results show unique synergistic advantages of the core–shell particles and open opportunities to tailor catalytic properties for electrocatalytic reactions. | en_US |
dc.language.iso | en | |
dc.publisher | Wiley | en_US |
dc.relation.isversionof | 10.1002/aenm.202304092 | en_US |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source | Wiley | en_US |
dc.title | Platinum/Tantalum Carbide Core–Shell Nanoparticles with Sub‐Monolayer Shells for Methanol and Oxygen Electrocatalysis | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Z. Wang, J. S. Kang, D. Göhl, P. Paciok, D. S. Gonçalves, H.-K. Lim, D. Zanchet, M. Heggen, Y. Shao-Horn, M. Ledendecker, Y. Román-Leshkov, Platinum/Tantalum Carbide Core–Shell Nanoparticles with Sub-Monolayer Shells for Methanol and Oxygen Electrocatalysis. Adv. Energy Mater. 2024, 2304092. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | |
dc.contributor.department | Massachusetts Institute of Technology. Research Laboratory of Electronics | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | |
dc.relation.journal | Advanced Energy Materials | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2024-04-24T20:58:13Z | |
dspace.orderedauthors | Wang, Z; Kang, JS; Göhl, D; Paciok, P; Gonçalves, DS; Lim, H; Zanchet, D; Heggen, M; Shao‐Horn, Y; Ledendecker, M; Román‐Leshkov, Y | en_US |
dspace.date.submission | 2024-04-24T20:58:15Z | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |