Show simple item record

dc.contributor.authorVelasco Vélez, Juan Jesús
dc.contributor.authorBernsmeier, Denis
dc.contributor.authorMom, Rik V.
dc.contributor.authorZeller, Patrick
dc.contributor.authorShao‐Horn, Yang
dc.contributor.authorRoldan Cuenya, Beatriz
dc.contributor.authorKnop‐Gericke, Axel
dc.contributor.authorSchlögl, Robert
dc.contributor.authorJones, Travis E.
dc.date.accessioned2024-04-25T12:35:37Z
dc.date.available2024-04-25T12:35:37Z
dc.date.issued2024-03-11
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/1721.1/154278
dc.description.abstractA special membrane electrode assembly to measure <jats:italic>operando</jats:italic> X‐ray absorption spectra and resonant photoemission spectra of mesoporous templated iridium oxide films is used. These films are calcined to different temperatures to mediate the catalyst activity. By combining <jats:italic>operando</jats:italic> resonant photoemission measurements of different films with ab initio simulations these are able to unambiguously distinguish µ<jats:sub>2</jats:sub>‐O (bridging oxygen) and µ<jats:sub>1</jats:sub>‐O (terminal oxygen) in the near‐surface regions of the catalysts. The intrinsic activity of iridium oxide scales with the formation of µ<jats:sub>1</jats:sub>‐O (terminal oxygen) is found. Importantly, it is shown that the peroxo species do not accumulate under reaction conditions. Rather, the formation of µ<jats:sub>1</jats:sub>‐O species, which are active in O−O bond formation during the OER, is the most oxidized oxygen species observed, which is consistent with an O−O rate‐limiting step. Thus, the oxygen species taking part in the electrochemical oxidation of water on iridium electrodes are more involved and complex than previously stated. This result highlights the importance of employing theory together with true and complementary <jats:italic>operando</jats:italic> measurements capable of probing different aspects of catalysts surfaces during operation.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionof10.1002/aenm.202303407en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceWileyen_US
dc.titleIridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Wateren_US
dc.typeArticleen_US
dc.identifier.citationJ. J. Velasco Vélez, D. Bernsmeier, R. V. Mom, P. Zeller, Y. Shao-Horn, B. Roldan Cuenya, A. Knop-Gericke, R. Schlögl, T. E. Jones, Iridium Oxide Coordinatively Unsaturated Active Sites Govern the Electrocatalytic Oxidation of Water. Adv. Energy Mater. 2024, 2303407.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalAdvanced Energy Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-04-24T21:21:16Z
dspace.orderedauthorsVelasco Vélez, JJ; Bernsmeier, D; Mom, RV; Zeller, P; Shao‐Horn, Y; Roldan Cuenya, B; Knop‐Gericke, A; Schlögl, R; Jones, TEen_US
dspace.date.submission2024-04-24T21:21:19Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record