Show simple item record

dc.contributor.authorTorrisi, Steven B.
dc.contributor.authorBazant, Martin Z.
dc.contributor.authorCohen, Alexander E.
dc.contributor.authorCho, Min Gee
dc.contributor.authorHummelshøj, Jens S.
dc.contributor.authorHung, Linda
dc.contributor.authorKamat, Gaurav
dc.contributor.authorKhajeh, Arash
dc.contributor.authorKolluru, Adeesh
dc.contributor.authorLei, Xiangyun
dc.contributor.authorLing, Handong
dc.contributor.authorMontoya, Joseph H.
dc.contributor.authorMueller, Tim
dc.contributor.authorPalizhati, Aini
dc.contributor.authorParen, Benjamin A.
dc.contributor.authorPhan, Brandon
dc.contributor.authorPietryga, Jacob
dc.contributor.authorSandraz, Elodie
dc.contributor.authorSchweigert, Daniel
dc.contributor.authorShao-Horn, Yang
dc.contributor.authorTrewartha, Amalie
dc.contributor.authorZhu, Ruijie
dc.contributor.authorZhuang, Debbie
dc.contributor.authorSun, Shijing
dc.date.accessioned2024-04-25T14:42:34Z
dc.date.available2024-04-25T14:42:34Z
dc.date.issued2023-06-01
dc.identifier.issn2770-9019
dc.identifier.urihttps://hdl.handle.net/1721.1/154283
dc.description.abstractMachine learning (ML) is gaining popularity as a tool for materials scientists to accelerate computation, automate data analysis, and predict materials properties. The representation of input material features is critical to the accuracy, interpretability, and generalizability of data-driven models for scientific research. In this Perspective, we discuss a few central challenges faced by ML practitioners in developing meaningful representations, including handling the complexity of real-world industry-relevant materials, combining theory and experimental data sources, and describing scientific phenomena across timescales and length scales. We present several promising directions for future research: devising representations of varied experimental conditions and observations, the need to find ways to integrate machine learning into laboratory practices, and making multi-scale informatics toolkits to bridge the gaps between atoms, materials, and devices.en_US
dc.language.isoen
dc.publisherAIP Publishingen_US
dc.relation.isversionof10.1063/5.0149804en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAIP Publishingen_US
dc.titleMaterials cartography: A forward-looking perspective on materials representation and devising better mapsen_US
dc.typeArticleen_US
dc.identifier.citationSteven B. Torrisi, Martin Z. Bazant, Alexander E. Cohen, Min Gee Cho, Jens S. Hummelshøj, Linda Hung, Gaurav Kamat, Arash Khajeh, Adeesh Kolluru, Xiangyun Lei, Handong Ling, Joseph H. Montoya, Tim Mueller, Aini Palizhati, Benjamin A. Paren, Brandon Phan, Jacob Pietryga, Elodie Sandraz, Daniel Schweigert, Yang Shao-Horn, Amalie Trewartha, Ruijie Zhu, Debbie Zhuang, Shijing Sun; Materials cartography: A forward-looking perspective on materials representation and devising better maps. APL Mach. Learn. 1 June 2023; 1 (2): 020901.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.relation.journalAPL Machine Learningen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-04-25T14:35:20Z
dspace.orderedauthorsTorrisi, SB; Bazant, MZ; Cohen, AE; Cho, MG; Hummelshøj, JS; Hung, L; Kamat, G; Khajeh, A; Kolluru, A; Lei, X; Ling, H; Montoya, JH; Mueller, T; Palizhati, A; Paren, BA; Phan, B; Pietryga, J; Sandraz, E; Schweigert, D; Shao-Horn, Y; Trewartha, A; Zhu, R; Zhuang, D; Sun, Sen_US
dspace.date.submission2024-04-25T14:35:24Z
mit.journal.volume1en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record