Show simple item record

dc.contributor.authorGong, Sheng
dc.contributor.authorWang, Shuo
dc.contributor.authorXie, Tian
dc.contributor.authorChae, Woo Hyun
dc.contributor.authorLiu, Runze
dc.contributor.authorShao-Horn, Yang
dc.contributor.authorGrossman, Jeffrey C.
dc.date.accessioned2024-04-25T19:03:43Z
dc.date.available2024-04-25T19:03:43Z
dc.date.issued2022-09-09
dc.identifier.issn2691-3704
dc.identifier.issn2691-3704
dc.identifier.urihttps://hdl.handle.net/1721.1/154287
dc.description.abstractThe application of machine learning to predict materials properties measured by experiments are valuable yet difficult due to the limited amount of experimental data. In this work, we use a multifidelity random forest model to learn the experimental formation enthalpy of materials with prediction accuracy higher than the Perdew-Burke-Ernzerhof (PBE) functional with linear correction, PBEsol, and meta-generalized gradient approximation (meta-GGA) functionals (SCAN and r2SCAN), and it outperforms the hotly studied deep neural network-based representation learning and transfer learning. We then use the model to calibrate the DFT formation enthalpy in the Materials Project database and discover materials with underestimated stability. The multifidelity model is also used as a data-mining approach to find how DFT deviates from experiments by explaining the model output.en_US
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/jacsau.2c00235en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceAmerican Chemical Societyen_US
dc.titleCalibrating DFT Formation Enthalpy Calculations by Multifidelity Machine Learningen_US
dc.typeArticleen_US
dc.identifier.citationSheng Gong, Shuo Wang, Tian Xie, Woo Hyun Chae, Runze Liu, Yang Shao-Horn, and Jeffrey C. Grossman JACS Au 2022 2 (9), 1964-1977.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.relation.journalJACS Auen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-04-25T18:55:54Z
dspace.orderedauthorsGong, S; Wang, S; Xie, T; Chae, WH; Liu, R; Shao-Horn, Y; Grossman, JCen_US
dspace.date.submission2024-04-25T18:55:56Z
mit.journal.volume2en_US
mit.journal.issue9en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record