MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Codesign of quantum error-correcting codes and modular chiplets in the presence of defects

Author(s)
Lin, Sophia Fuhui; Viszlai, Joshua; Smith, Kaitlin N.; Ravi, Gokul Subramanian; Yuan, Charles; Chong, Frederic T.; Brown, Benjamin J.; ... Show more Show less
Thumbnail
Download3620665.3640362.pdf (1.577Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Fabrication errors pose a significant challenge in scaling up solid-state quantum devices to the sizes required for fault-tolerant (FT) quantum applications. To mitigate the resource overhead caused by fabrication errors, we combine two approaches: (1) leveraging the flexibility of a modular architecture, (2) adapting the procedure of quantum error correction (QEC) to account for fabrication defects. We simulate the surface code adapted to defective qubit arrays to find metrics that characterize how defects affect fidelity. We then use our simulations to determine the impact of defects on the resource overhead of realizing a fault-tolerant quantum computer on a chiplet-based modular architecture. Our QEC simulation adapts the syndrome readout circuit for the surface code to account for an arbitrary distribution of defects. Our simulations show that our strategy for dealing with fabrication defects demonstrates an exponential suppression of logical failure, where error rates of non-defective physical qubits are ~ 0.1% for a circuit-based noise model. This is a typical regime on which we imagine running the defect-free surface code. We use our numerical results to establish post-selection criteria for assembling a device with defective chiplets. Using our criteria, we then evaluate the resource overhead in terms of the average number of physical qubits fabricated for a logical qubit to obtain a target logical error rate. We find that an optimal choice of chiplet size, based on the defect rate and target performance, is essential to limiting any additional error correction overhead due to defects. When the optimal chiplet size is chosen, at a defect rate of 1% the resource overhead can be reduced to below 3X and 6X respectively for the two defect models we use, for a wide range of target performance. Without tolerance to defects, the overhead grows exponentially as we increase the number of physical qubits in each logical qubit to achieve better performance, and also grows faster with an increase in the defect rate. When the target code distance is 27, the resource overhead of the defect-intolerant, modular approach is 45X and more than 105X higher than the super-stabilizer approach, respectively, at a defect rate of 0.1% and 0.3%. We also determine cutoff fidelity values that help identify whether a qubit should be disabled or kept as part of the QEC code.
Description
ASPLOS '24: Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems April 27-May 1, 2024, La Jolla, CA, USA
Date issued
2024-04-27
URI
https://hdl.handle.net/1721.1/154381
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
ACM
Citation
Lin, Sophia Fuhui, Viszlai, Joshua, Smith, Kaitlin N., Ravi, Gokul Subramanian, Yuan, Charles et al. 2024. "Codesign of quantum error-correcting codes and modular chiplets in the presence of defects."
Version: Final published version
ISBN
979-8-4007-0385-0

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.