Show simple item record

dc.contributor.authorMichel, Jesse
dc.contributor.authorMu, Kevin
dc.contributor.authorYang, Xuanda
dc.contributor.authorBangaru, Sai Praveen
dc.contributor.authorCollins, Elias Rojas
dc.contributor.authorBernstein, Gilbert
dc.contributor.authorRagan-Kelley, Jonathan
dc.contributor.authorCarbin, Michael
dc.contributor.authorLi, Tzu-Mao
dc.date.accessioned2024-05-03T15:40:39Z
dc.date.available2024-05-03T15:40:39Z
dc.date.issued2024-04-29
dc.identifier.issn2475-1421
dc.identifier.urihttps://hdl.handle.net/1721.1/154393
dc.description.abstractComputations in physical simulation, computer graphics, and probabilistic inference often require the differentiation of discontinuous processes due to contact, occlusion, and changes at a point in time. Popular differentiable programming languages, such as PyTorch and JAX, ignore discontinuities during differentiation. This is incorrect for <jats:italic>parametric discontinuities</jats:italic> —conditionals containing at least one real-valued parameter and at least one variable of integration. We introduce Potto, the first differentiable first-order programming language to soundly differentiate parametric discontinuities. We present a denotational semantics for programs and program derivatives and show the two accord. We describe the implementation of Potto, which enables separate compilation of programs. Our prototype implementation overcomes previous compile-time bottlenecks achieving an 88.1x and 441.2x speed up in compile time and a 2.5x and 7.9x speed up in runtime, respectively, on two increasingly large image stylization benchmarks. We showcase Potto by implementing a prototype differentiable renderer with separately compiled shaders.en_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionof10.1145/3649843en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/en_US
dc.sourceAssociation for Computing Machineryen_US
dc.titleDistributions for Compositionally Differentiating Parametric Discontinuitiesen_US
dc.typeArticleen_US
dc.identifier.citationMichel, Jesse, Mu, Kevin, Yang, Xuanda, Bangaru, Sai Praveen, Collins, Elias Rojas et al. 2024. "Distributions for Compositionally Differentiating Parametric Discontinuities." Proceedings of the ACM on Programming Languages, 8 (OOPSLA1).
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalProceedings of the ACM on Programming Languagesen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-05-01T07:48:33Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2024-05-01T07:48:34Z
mit.journal.volume8en_US
mit.journal.issueOOPSLA1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record