All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data
Author(s)
Sudhir, Vivishek
DownloadPhysRevD.105.102001.pdf (2.100Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
This paper describes the first all-sky search for long-duration, quasimonochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 to 610 Hz, over a small frequency derivative range around zero, and use multiple frequency resolutions to be robust towards possible signal frequency wanderings. Outliers from this search are followed up using two different methods, one more suitable for nearly monochromatic signals, and the other more robust towards frequency fluctuations. We do not find any evidence for such signals and set upper limits on the signal strain amplitude, the most stringent being
≈
10
−
25
at around 130 Hz. We interpret these upper limits as both an “exclusion region” in the boson mass/black hole mass plane and the maximum detectable distance for a given boson mass, based on an assumption of the age of the black hole/boson cloud system.
Date issued
2022-05-09Journal
Physical Review D
Publisher
American Physical Society
Citation
Sudhir, Vivishek. 2022. "All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data." Physical Review D, 105 (10).
Version: Final published version
ISSN
2470-0010
2470-0029