Show simple item record

dc.contributor.authorSafir, Fareeha
dc.contributor.authorVu, Nhat
dc.contributor.authorTadesse, Loza F.
dc.contributor.authorFirouzi, Kamyar
dc.contributor.authorBanaei, Niaz
dc.contributor.authorJeffrey, Stefanie S.
dc.contributor.authorSaleh, Amr. A. E.
dc.contributor.authorKhuri-Yakub, Butrus (Pierre) T.
dc.contributor.authorDionne, Jennifer A.
dc.date.accessioned2024-05-09T14:55:07Z
dc.date.available2024-05-09T14:55:07Z
dc.date.issued2023-03-01
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttps://hdl.handle.net/1721.1/154870
dc.description.abstractIdentifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios <1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.en_US
dc.language.isoen
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionof10.1021/acs.nanolett.2c03015en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAmerican Chemical Societyen_US
dc.titleCombining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blooden_US
dc.typeArticleen_US
dc.identifier.citationSafir, Fareeha, Vu, Nhat, Tadesse, Loza F., Firouzi, Kamyar, Banaei, Niaz et al. 2023. "Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood." Nano Letters, 23 (6).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalNano Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-05-09T14:50:54Z
dspace.orderedauthorsSafir, F; Vu, N; Tadesse, LF; Firouzi, K; Banaei, N; Jeffrey, SS; Saleh, AAE; Khuri-Yakub, BPT; Dionne, JAen_US
dspace.date.submission2024-05-09T14:50:57Z
mit.journal.volume23en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record