MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of a Four-Bar Latch Mechanism and a Shear-Based Rotary Viscous Damper for Single-Axis Prosthetic Knees

Author(s)
Arelekatti, VN Murthy; Petelina, Nina T; Johnson, W Brett; Major, Matthew J; Winter V, Amos G
Thumbnail
DownloadPublished version (1.248Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
With over 30 million people worldwide requiring assistive devices, there is a great need for low-cost and high-performance prosthetic technologies that can enable kinematics close to able-bodied gait. Low-income users of prosthetic knees in the developing world repeatedly report the need for n inconspicuous gait to mitigate the severe socioeconomic discrimination associated with disability. However, passive prosthetic knees designed for these users have primarily focused on stability and affordability, often at the cost of the high biomechanical performance that is required to replicate able-bodied kinematics. In this study, we present the design and preliminary testing of two distinct mechanism modules that are novel for passive prosthetic knee applications: the stability module and the damping module. These mechanisms are designed to enable users of single-axis, passive prosthetic knees to walk with close to able-bodied kinematics on level-ground, specifically during the transition from the stance phase to the swing phase of the gait cycle. The stability module was implemented with a latch mounted on a virtual axis of a four-bar linkage, which can be engaged during early stance for stability and disengaged during late stance to initiate knee flexion. The damping module was implemented with a concentric stack of stationary and rotating pairs of plates that shear thin films of high-viscosity silicone oil. The goal of the resulting first-order damping torque was to achieve smooth flexion of the prosthetic knee within the able-bodied gait range (64 ± 6 deg). For preliminary user-centric validation, a prototype prosthetic knee with the stability module and two different dampers (with varying damping coefficients) was tested on a single subject with above-knee amputation in India. The stability module enabled smooth transition from stance to swing with timely initiation of knee flexion. The dampers also performed satisfactorily, as the increase in the damping coefficient was found to decrease the peak knee flexion angle during swing. The applications of the mechanisms presented in this article could significantly improve the kinematic performance of low-cost, passive prosthetic knees.
Date issued
2022-06-01
URI
https://hdl.handle.net/1721.1/154905
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Mechanisms and Robotics
Publisher
ASME International
Citation
Arelekatti, VN Murthy, Petelina, Nina T, Johnson, W Brett, Major, Matthew J and Winter V, Amos G. 2022. "Design of a Four-Bar Latch Mechanism and a Shear-Based Rotary Viscous Damper for Single-Axis Prosthetic Knees." Journal of Mechanisms and Robotics, 14 (3).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.